Missing not at random models for masked clinical trials with dropouts

Type: Article

Publication Date: 2015-01-27

Citations: 16

DOI: https://doi.org/10.1177/1740774514566662

Locations

Similar Works

Action Title Year Authors
+ PDF Chat Imputation of missing covariate in randomized controlled trials with a continuous outcome: Scoping review and new results 2020 Mutamba T. Kayembe
Shahab Jolani
Frans E. S. Tan
Gerard van Breukelen
+ PDF Chat Randomization-Based Inference for Clinical Trials with Missing Outcome Data 2023 N Heussen
R.-D Hilgers
William F. Rosenberger
Xiao Tan
Diane Uschner
+ MSR19 Missing Patient Reported Outcome Data in Clinical Trials: An Overview and Simulation Study 2023 James S. McGinley
Andrea Savord
Eric K. H. Chan
A. Larbalestier
Yang Liu
Patricia Shepherd Delong
R. Wirth
+ PDF Chat A simple method for analyzing data from a randomized trial with a missing binary outcome 2003 Stuart G. Baker
Laurence S. Freedman
+ Strategies for dealing with missing data in clinical trials: from design to analysis. 2013 James Dziura
Lori Ann Post
Qing Zhao
Zhixuan Fu
Peter Peduzzi
+ Multiple Imputation of Missing Covariates in Randomized Controlled Trials 2019 Gauri Kamat
+ Editorial: Missing Data—Prevention and Analysis 2009 Guoxing Soon
+ Missing Data 2015 Craig D. Newgard
Roger Lewis
+ Handling Missing Data in Randomized Controlled Trials with Omitted Moderation Effects 2024 Elizabeth Pauley
Manshu Yang
+ Handling of outcome missing data dependent on measured or unmeasured background factors in micro-randomized trial: Simulation and application study 2024 Masahiro Kondo
Koji Oba
+ Dealing with missing data in randomized and cluster randomized trials 2021 Mutamba T. Kayembe
+ An Overview of Practical Approaches for Handling Missing Data in Clinical Trials 2009 Cynthia DeSouza
Anna Legedza
Abdul J. Sankoh
+ Guideline on missing data in confirmatory clinical trials 2012 Jing Zhang
+ PDF Chat Supplemental Material for Handling Missing Data in Partially Clustered Randomized Controlled Trials 2023
+ PDF Chat A systematic survey of the methods literature on the reporting quality and optimal methods of handling participants with missing outcome data for continuous outcomes in randomized controlled trials 2017 Yuqing Zhang
Akram Alyass
Thuva Vanniyasingam
Behnam Sadeghirad
Iván D. Flórez
Sathish Chandra Pichika
Sean A. Kennedy
Ulviya Abdulkarimova
Yuan Zhang
Tzvia Iljon
+ PDF Chat Systematic Missing-At-Random (SMAR) Design and Analysis for Translational Research Studies 2008 Ilana Belitskaya‐Lévy
Yongzhao Shao
Judith D. Goldberg
+ PDF Chat Missing data and sensitivity analysis for binary data with implications for sample size and power of randomized clinical trials 2019 Thomas D. Cook
Ryan Zea
+ Multiple imputation of missing data in clinical trials 2001 Paul J. Zhang
+ Missing data in clinical trials: a different point of view. 2018 Wilson Fandino
+ Missing Data 2018 Steven A. Gilbert
Jared C. Christensen

Works That Cite This (9)

Action Title Year Authors
+ PDF Chat An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data 2017 Brian Liu
Vanathi Gopalakrishnan
+ BAGEL: A non-ignorable missing value estimation method for mixed attribute datasets 2016 R. Devi Priya
S. Kuppuswami
R. Sivaraj
+ Exact Unconditional Tests for Dichotomous Data When Comparing Multiple Treatments With a Single Control 2019 Guogen Shan
Carolee Dodge‐Francis
Gregory E. Wilding
+ PDF Chat Handling Missing Data in Structural Equation Models in R. A Replication Study for Applied Researchers 2017 Anett Wolgast
Malte Schwinger
Carolin Hahnel
Joachim Stiensmeier‐Pelster
+ Exact Unconditional Tests for Dichotomous Data When Comparing Multiple Treatments With a Single Control 2020 Guogen Shan
Carolee Dodge‐Francis
Gregory E. Wilding
+ Conditions for Ignoring the Missing-Data Mechanism in Likelihood Inferences for Parameter Subsets 2016 Roderick J. A. Little
Donald B. Rubin
Sahar Z. Zangeneh
+ PDF Chat Using Multiple Imputation and Inverse Probability Weighting to Adjust for Missing Data in HIV Prevalence Estimates: A Cross-Sectional Study in Mwanza, North Western Tanzania. 2021 TINASHE MHIKE
Jim Todd
Mark Urassa
Neema Mosha
+ PDF Chat USING MULTIPLE IMPUTATION AND INVERSE PROBABILITY WEIGHTING TO ADJUST FOR MISSING DATA IN HIV PREVALENCE ESTIMATES 2023 TINASHE MHIKE
Jim Todd
Mark Urassa
NEEMA R. MOSHA
+ An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data 2016 Yuzhe Liu
Vanathi Gopalakrishnan