Roberge-Weiss transition and ’t Hooft loops

Type: Article

Publication Date: 2013-05-14

Citations: 21

DOI: https://doi.org/10.1103/physrevd.87.096009

Abstract

Roberge and Weiss showed that for $SU(N)$ gauge theories, phase transitions occur in the presence of an imaginary quark chemical potential. We show that at asymptotically high temperature, where the phase transition is of first order, that even with dynamical quarks 't Hooft loops of arbitrary $Z(N)$ charge are well defined at the phase boundary. To leading order in weak coupling, the 't Hooft loop satisfies Casimir scaling in the pure glue theory, but not with quarks. Because the chemical potential is imaginary, typically the interaction measure is negative on one side of the phase transition. Using a matrix model to model the deconfining phase transition, we compute the phase diagram for heavy quarks, in the plane of temperature and imaginary chemical potential. In general we find intersecting lines of first order transitions. Using a modified Polyakov loop which is Roberge-Weiss symmetric, we suggest that the interface tension is related to the 't Hooft loop only at high temperature, where the imaginary part of this Polyakov loop, and not the real part, is discontinuous across the phase boundary.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology - View - PDF
  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Finite-temperature phase transitions of third and higher order in gauge theories at large <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math> 2018 Hiromichí Nishimura
Robert D. Pisarski
Vladimir V. Skokov
+ PDF Chat Roberge-Weiss transitions at imaginary isospin chemical potential 2022 Amine Chabane
Gergely Endrődi
+ Roberge-Weiss transitions at imaginary isospin chemical potential 2021 Amine Chabane
Gergely Endrődi
+ PDF Chat Zero interface tensions at the deconfining phase transition for a matrix model of a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="bold-italic">S</mml:mi><mml:mi>U</mml:mi><mml:mo mathvariant="bold" stretchy="false">(</mml:mo><mml:mo mathvariant="bold">∞</mml:mo><mml:mo mathvariant="bold" stretchy="false">)</mml:mo></mml:math>gauge theory 2013 Shu Lin
Robert D. Pisarski
Vladimir V. Skokov
+ The light Roberge-Weiss tricritical endpoint at imaginary isospin and baryon chemical potential 2022 Bastian B. Brandt
Amine Chabane
V. Chelnokov
Francesca Cuteri
Gergely Endrődi
Christopher Winterowd
+ PDF Chat Nature of Roberge-Weiss transition endpoints for heavy quarks in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math>lattice QCD with Wilson fermions 2014 Liang-Kai Wu
Xiangfei Meng
+ The QCD phase diagram in the space of imaginary chemical potential via 't Hooft anomalies 2023 Shun Kobayashi
Takahiro Yokokura
Kazuya Yonekura
+ Possible higher order phase transition in large-N gauge theory at finite temperature 2018 Hiromichí Nishimura
Robert D. Pisarski
Vladimir V. Skokov
+ Possible higher order phase transition in large-$N$ gauge theory at finite temperature 2017 Hiromichí Nishimura
Robert D. Pisarski
Vladimir V. Skokov
+ Strong to weak coupling transitions of SU(N) gauge theories in 2+1 dimensions 2006 Francis Bursa
M. Teper
+ PDF Chat QCD at imaginary chemical potential with Wilson fermions 2014 Andrei Alexandru
Anyi Li
+ QCD at imaginary chemical potential with Wilson fermions 2013 Andrei Alexandru
Anyi Li
+ PDF Chat Deconfinement in matrix models about the Gross-Witten point 2005 Adrian Dumitru
Jonathan Lenaghan
Robert D. Pisarski
+ PDF Chat Roberge-Weiss transition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">f</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math>QCD with Wilson fermions and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:… 2016 Christopher Czaban
Francesca Cuteri
Owe Philipsen
Christopher Pinke
Alessandro Sciarra
+ PDF Chat 't Hooft loops and perturbation theory 2005 Philippe de Forcrand
Biagio Lucini
David Noth
+ 't Hooft loops and perturbation theory 2005 Philippe de Forcrand
Biagio Lucini
David Noth
+ PDF Chat Vogel-Fulcher-Tamman criticality of 3D superinsulators 2018 M. C. Diamantini
L. Gammaitoni
Carlo A. Trugenberger
V. M. Vinokur
+ t Hooft loops and perturbation theory 2005 Philippe de Forcrand
Biagio Lucini
David Noth
+ PDF Chat Nature of the Roberge-Weiss transition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>N</mml:mi><mml:mi>f</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:math>QCD with Wilson fermions 2014 Owe Philipsen
Christopher Pinke
+ PDF Chat Anomaly matching in QCD thermal phase transition 2019 Kazuya Yonekura

Works That Cite This (19)

Action Title Year Authors
+ PDF Chat Chiral matrix model of the semi-QGP in QCD 2016 Robert D. Pisarski
Vladimir V. Skokov
+ PDF Chat Free energy of a holonomous plasma 2020 C.P. Korthals Altes
Hiromichí Nishimura
Robert D. Pisarski
Vladimir V. Skokov
+ PDF Chat Deconfinement in the presence of a strong magnetic field 2020 Pok Man Lo
Michał Szymański
Chihiro Sasaki
K. Redlich
+ PDF Chat Wilson loops in the Hamiltonian formalism 2022 Robert D. Pisarski
+ PDF Chat Gauge-invariant screening masses and static quark free energies in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>N</mml:mi><mml:mi>f</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math> QCD at nonzero baryon density 2018 Michele Andreoli
Claudio Bonati
Massimo D’Elia
Michele Mesiti
Francesco Negro
Andrea Rucci
Francesco Sanfilippo
+ PDF Chat Matrix models for deconfinement and their perturbative corrections 2014 Yun Guo
+ PDF Chat Dilepton and photon production in the presence of a nontrivial Polyakov loop 2015 Yoshimasa Hidaka
Shu Lin
Robert D. Pisarski
Daisuke Satow
+ PDF Chat Universal aspects of the phase diagram of QCD with heavy quarks 2018 J. Maelger
Urko Reinosa
Julien Serreau
+ PDF Chat Quark number holonomy and confinement-deconfinement transition 2016 Kouji Kashiwa
Akira Ohnishi
+ PDF Chat Roberge-Weiss endpoint at the physical point of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>QCD 2016 Claudio Bonati
Massimo D’Elia
Marco Mariti
Michele Mesiti
Francesco Negro
Francesco Sanfilippo

Works Cited by This (47)

Action Title Year Authors
+ PDF Chat Investigation of meson masses for real and imaginary chemical potential using the three-flavor PNJL model 2010 Takeshi Matsumoto
Kouji Kashiwa
Hiroaki Kouno
Kagayaki Oda
Masanobu Yahiro
+ PDF Chat Phase Structure of Two-Flavor QCD at Finite Chemical Potential 2011 Jens Braun
Lisa M. Haas
Florian Marhauser
Jan M. Pawlowski
+ PDF Chat Strongly interacting quark-gluon plasma, and the critical behavior of QCD at imaginary<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>μ</mml:mi></mml:math> 2007 Massimo D’Elia
Francesco Di Renzo
Maria Paola Lombardo
+ PDF Chat Roberge-Weiss endpoint in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>N</mml:mi><mml:mi>f</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:math>QCD 2011 Claudio Bonati
Guido Cossu
Massimo D’Elia
Francesco Sanfilippo
+ PDF Chat The QCD phase diagram for small densities from imaginary chemical potential 2002 Philippe de Forcrand
Owe Philipsen
+ PDF Chat An effective thermodynamic potential from the instanton with Polyakov-loop contributions 2010 Seung-il Nam
+ PDF Chat Spatial 't Hooft loop, hot QCD and ZN domain walls 1999 C.P. Korthals-Altes
Alex Kovner
Mikhail Stephanov
+ PDF Chat 't Hooft Loop in SU(2) Yang-Mills Theory 2001 Philippe de Forcrand
Massimo D’Elia
Michele Pepe
+ PDF Chat How wide is the transition to deconfinement? 2011 Adrian Dumitru
Yun Guo
Yoshimasa Hidaka
Christiaan P. Korthals Altes
Robert D. Pisarski
+ PDF Chat Phase diagram in the imaginary chemical potential region and extended<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>symmetry 2008 Yuji Sakai
Kouji Kashiwa
Hiroaki Kouno
Masanobu Yahiro