A family of real 2ⁿ-tic fields

Type: Article

Publication Date: 1994-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9947-1994-1264151-6

Abstract

We study the family of polynomials <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P Subscript n Baseline left-parenthesis upper X semicolon a right-parenthesis equals normal fraktur upper R left-parenthesis left-parenthesis upper X plus i right-parenthesis Superscript 2 Super Superscript n Superscript Baseline right-parenthesis minus StartFraction a Over 2 Superscript n Baseline EndFraction normal fraktur upper I left-parenthesis left-parenthesis upper X plus i right-parenthesis Superscript 2 Super Superscript n Superscript Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>;</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi mathvariant="normal">ℜ<!-- ℜ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>+</mml:mo> <mml:mi>i</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mi>a</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> </mml:mfrac> <mml:mi mathvariant="normal">ℑ<!-- ℑ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>+</mml:mo> <mml:mi>i</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{P_n}(X;a) = \Re ({(X + i)^{{2^n}}}) - \frac {a}{{{2^n}}}\Im ({(X + i)^{{2^n}}})</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> and determine when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P Subscript n Baseline left-parenthesis upper X semicolon a right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>;</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{P_n}(X;a)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a element-of double-struck upper Z"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">a \in \mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is irreducible. The roots are all real and are permuted cyclically by a linear fractional transformation defined over the real subfield of the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{2^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th cyclotomic field. The families of fields we obtain are natural extensions of those studied by M.-N. Gras and Y.-Y. Shen, but in general the present fields are non-Galois for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 4"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. From the roots we obtain a set of independent units for the Galois closure that generate an "almost fundamental piece" of the full group of units. Finally, we discuss the two examples where our fields are Galois, namely <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a equals plus-or-minus 2 Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>=</mml:mo> <mml:mo>±<!-- ± --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">a = \pm {2^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a equals plus-or-minus 2 Superscript 4 Baseline bullet 239"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>=</mml:mo> <mml:mo>±<!-- ± --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mn>4</mml:mn> </mml:msup> </mml:mrow> <mml:mo>∙<!-- ∙ --></mml:mo> <mml:mn>239</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">a = \pm {2^4} \bullet 239</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Exponents of class groups of real quadratic function fields 2004 Kalyan Chakraborty
Anirban Mukhopadhyay
+ PDF Chat Fields with few extensions 1971 John Knopfmacher
Allan M. Sinclair
+ PDF Chat Primitive polynomials over finite fields 1992 Tom Hansen
Gary L. Mullen
+ PDF Chat Numbers generated by the reciprocal of 𝑒^{𝑥}-𝑥-1 1977 F. T. Howard
+ PDF Chat Bounded polynomial vector fields 1990 Anna Cima
Jaume Llibre
+ Real 3𝑥+1 2004 Michał Misiurewicz
Ana Rodrigues
+ PDF Chat On Hilbert class fields in characteristic 𝑝&gt;0 and their 𝐿-functions 1977 Stuart Turner
+ PDF Chat A classification of all 𝐷 such that {𝐼𝑛𝑡}(𝐷) is a Prüfer domain 1998 K. Alan Loper
+ PDF Chat Crinkled functions and intersections with polynomials 1993 Alex Fink
+ PDF Chat Polynomials with Galois groups 𝐴𝑢𝑡(𝑀₂₂),𝑀₂₂, and 𝑃𝑆𝐿₃(𝐹₄)⋅2₂ over 𝑄 1988 Gunter Malle
+ PDF Chat A table of quintic number fields 1994 Albert Schwarz
Michael Pohst
Fredéric Diaz
+ On real quadratic function fields of Chowla type with ideal class number one 1999 Keqin Feng
Weiqun Hu
+ Generation of Siegel modular function fields of even level 2017 Dong Sung Yoon
+ PDF Chat On modular functions in characteristic 𝑝 1978 Wen Ch’ing Winnie Li
+ PDF Chat Polynomials with no small prime values 1986 Kevin S. McCurley
+ PDF Chat Quadratic residue covers for certain real quadratic fields 1994 R. A. Mollin
Hywel C Williams
+ PDF Chat Generating functions for relatives of classical polynomials 1988 Patrick D. Barry
Donny Hurley
+ PDF Chat Diophantine sets over 𝑍[𝑇] 1978 Jan Denef
+ On some polynomials and series of Bloch–Pólya type 2017 Alexander Bérkovich
Ali Kemal Uncu
+ PDF Chat Separating 𝑝-bases and transcendental extension fields 1972 John N. Mordeson
Bernard Vinograde