A generalization of the Bernstein polynomials

Type: Article

Publication Date: 1999-06-01

Citations: 108

DOI: https://doi.org/10.1017/s0013091500020332

Abstract

This paper is concerned with a generalization of the classical Bernstein polynomials where the function is evaluated at intervals which are in geometric progression. It is shown that, when the function is convex, the generalized Bernstein polynomials B n are monotonic in n , as in the classical case.

Locations

  • Proceedings of the Edinburgh Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A de Casteljau algorithm for generalized Bernstein polynomials 1997 George M. Phillips
+ PDF Chat A de Casteljau Algorithm for -Bernstein-Stancu Polynomials 2011 Grzegorz Nowak
+ PDF Chat Convexity and generalized Bernstein polynomials 1999 Tim N.T. Goodman
Halil Oruç
George M. Phillips
+ A Generalization of the Bernstein Polynomials 1997 Jia-Ding Cao
+ A New Generalization of Bernstein Polynomials 2021 Harun ÇİÇEK
Aydın İZGİ
+ PDF Chat A NOTE ON THE GENERALIZED BERNSTEIN POLYNOMIALS 2011 Abdelmejid Bayad
T. Kim
S.H. Lee
D. V. Dolgy
+ Convergence of Generalized Bernstein Polynomials 2002 А. И. Ильинский
Sofiya Ostrovska
+ Some New Classes and Techniques in the Theory of Bernstein Functions 2021 Safa Bridaa
Sonia Fourati
Wissem Jedidi
+ PDF Chat A generalization of the Bernstein polynomials based on the <i>q</i>-integers 2000 George M. Phillips
+ Generalized Bernstein Polynomials 2014 Ceren Ustaoğlu
+ Bernstein Functions: Theory and Applications 2010 René L. Schilling
Renming Song
Zoran Vondraček
+ PDF Chat Some approximation properties of ( p , q ) $(p,q)$ -Bernstein operators 2016 Shin Min Kang
Arif Rafiq
Ana Maria Acu
Faisal Ali
Young Chel Kwun
+ An Extension of Bernstein Polynomials on the Semi–Axis 2005 G. Mastroianni
Donatella Occorsio
+ The generalization of the Bernstein operator on any finite interval 2016 Dan Miclăuş
+ Approximation of a monotone function by Bernstein polynomials 1968 Wassily Hoeffding
+ Convexity preserving and predicting by Bernstein polynomials 1984 Eitan Lapidot
+ An extension of Bernstein inequality 2021 Ha Huy Bang
Vu Nhat Huy
+ A generalized Bernstein approximation theorem 1988 João B. Prolla
+ PDF Chat On a New Generalization of Bernstein-Type Rational Functions and Its Approximation 2022 Esma Yıldız Özkan
Gözde Aksoy
+ Approximation of functions by means of a new generalized Bernstein operator 1983 D. D. Stancu