Inverse of the distance matrix of a block graph

Type: Article

Publication Date: 2011-04-22

Citations: 40

DOI: https://doi.org/10.1080/03081087.2011.557374

Locations

  • Linear and Multilinear Algebra - View

Similar Works

Action Title Year Authors
+ Inverse of the distance matrix of a bi-block graph 2015 Yaoping Hou
Yajing Sun
+ Distance Matrix of a Multi-block Graph: Determinant and Inverse 2019 Joyentanuj Das
Sumit Mohanty
+ Distance Matrix of Multi-block Graphs: Determinant and Inverse 2019 Joyentanuj Das
Sumit Mohanty
+ A q-analogue of distance matrix of block graphs 2023 Rundan Xing
Zhibin Du
+ PDF Chat On the adjacency matrix of a block graph 2013 R.B. Bapat
Souvik Roy
+ Distance Matrix of a Multi-block Graph: Determinant and Inverse. 2019 Joyentanuj Das
Sumit Mohanty
+ PDF Chat Distance matrix of a multi-block graph: determinant and inverse 2020 Joyentanuj Das
Sumit Mohanty
+ SMITH NORMAL FORMAL OF DISTANCE MATRIX OF BLOCK GRAPHS 2016 Jing Jing
Chen
Yaoping
Hou
+ The exponential distance matrix of block graphs 2022 Rundan Xing
Zhibin Du
+ Inverse of the distance matrix of a cycle–clique graph 2015 Yaoping Hou
Fang Ai-xiang
Yajing Sun
+ PDF Chat Block distance matrices 2007 R. Balaji
R.B. Bapat
+ On the second largest distance eigenvalue of a block graph 2020 Jie Xue
Huiqiu Lin
Jinlong Shu
+ On the determinant of q-distance matrix of a graph 2013 Honghai Li
Li Su
Jing Zhang
+ On distance and Laplacian matrices of trees with matrix weights 2017 Fouzul Atik
M. Rajesh Kannan
R.B. Bapat
+ On distance matrices of graphs 2017 Hui Zhou
Qi Ding
Ruiling Jia
+ PDF Chat The determinant of the distance matrix of graphs with blocks at most bicyclic 2020 Ezequiel Dratman
Luciano N. Grippo
Martín D. Safe
Celso M. da Silva
Renata R. Del-Vecchio
+ The distance matrix and its variants for graphs and digraphs 2021 Carolyn Reinhart
+ The second immanant of some combinatorial matrices 2015 R.B. Bapat
Sivaramakrishnan Sivasubramanian
+ PDF Chat On the Net Distance Matrix of a Signed Block Graph 2023 Zixuan Hong
Yaoping Hou
+ PDF Chat A $q$-Analogue of Graham, Hoffman and Hosoya's Theorem 2010 Sivaramakrishnan Sivasubramanian