THE IHARA–SELBERG ZETA FUNCTION FOR PGL<sub>3</sub> AND HECKE OPERATORS

Type: Article

Publication Date: 2006-02-01

Citations: 11

DOI: https://doi.org/10.1142/s0129167x06003412

Abstract

A weak version of the Ihara formula is proved for zeta functions attached to quotients of the Bruhat–Tits building of PGL 3 . This formula expresses the zeta function in terms of Hecke-operators. It is the first step towards an arithmetical interpretation of the combinatorially defined zeta function.

Locations

  • International Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The Ihara-Selberg zeta function for PGL(3) and Hecke operators 2004 Anton Deitmar
+ The Ihara zeta functions of algebraic groups(Algebraic Number Theory) 1991 尚志 市川
+ The Ihara zeta functions of algebraic groups(Algebraic Number Theory) 1991 Takashi Ichikawa
+ The Ihara Zeta function and Quantum Walk (Profinite monodromy, Galois representations, and Complex functions) 2019 Iwao Sato
+ Congruences of modular forms and the Iwasawa lambda-invariants 2018 Yuichi Hirano
+ The Hecke Type Zeta-functions 2014
+ The Zeta Functions of Complexes from $\PGL(3)$: a Representation-theoretic Approach 2008 Ming-Hsuan Kang
Wen-Ching Winnie Li
Chian-Jen Wang
+ Talk summary 1. the Riemann zeta-function and Hecke congruence subgroups 2. three problems of Atle Selberg (1917-2007) (解析的整数論とその周辺--RIMS研究集会報告集) 2009 洋一 本橋
+ PDF Chat Theorems and Conjectures on an Arithmetic Sum Associated with the Classical Theta Function $\theta_3$ 2024 Bruce C. Berndt
Raghavendra N. Bhat
Jeffrey L. Meyer
Likun Xie
Alexandru Zaharescu
+ Arithmetic expressions of Selberg's zeta functions for congruence subgroups 2006 Yasufumi Hashimoto
+ The Riemann Zeta-Function and the Hecke Congruence Subgroups(Analytic Number Theory) 1996 洋一 本橋
+ The Riemann Zeta-Function and the Hecke Congruence Subgroups(Analytic Number Theory) 1996 Yoichi Motohashi
+ TALK SUMMARY : 1. The Riemann Zeta-Function and Hecke Congruence Subgroups : 2. Three problems of Atle Selberg, 1917-2007 (Analytic Number Theory and Related Areas) 2009 Yoichi Motohashi
+ PDF Chat The zeta functions of complexes from PGL(3): A representation-theoretic approach 2010 Ming-Hsuan Kang
Wen-Ching Winnie Li
Chian-Jen Wang
+ The Theory of the Selberg Zeta-Function 1990 Alexei B. Venkov
+ Zeta Functions of Complexes Arising from PGL(3) 2008 Ming-Hsuan Kang
Wen-Ching Winnie Li
+ Tree-lattice zeta functions and class numbers 2014 Antonius Deitmar
Ming-Hsuan Kang
+ PDF Chat Hecke's theory and the Selberg class 2006 Jerzy Kaczorowski
Giuseppe Molteni
Alberto Perelli
Jörn Steuding
Jürgen Wolfart
+ Zeta Polynomials and the Möbius Function 1980 Paul H. Edelman
+ Arithmetic topology in Ihara theory: Milnor invariants, Heisenberg coverings and triple power residue symbols (Profinite monodromy, Galois representations, and Complex functions) 2019 昌紀 森下