On the zeros of Dirichlet 𝐿-functions. I

Type: Article

Publication Date: 1974-01-01

Citations: 26

DOI: https://doi.org/10.1090/s0002-9947-1974-0349603-2

Abstract

A mean value theorem for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="arg upper L left-parenthesis 1 slash 2 plus i left-parenthesis t plus h right-parenthesis comma chi right-parenthesis minus arg upper L left-parenthesis 1 slash 2 plus i t comma chi right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>arg</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>i</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>arg</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>i</mml:mi> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\arg L(1/2 + i(t + h), \chi ) - \arg L(1/2 + it, \chi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is established. This yields mean estimates for the number of zeros of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L left-parenthesis s comma chi right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">L(s, \chi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in small boxes.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Zeros of Dirichlet polynomials 2020 Arindam Roy
Akshaa Vatwani
+ PDF Chat On the zeros of Dirichlet 𝐿-functions. II 1981 Akio Fujii
+ The Zeros of Dirichlet's <i>L</i> -Functions 1931 E. C. Titchmarsh
+ On the Zeros of Dirichlet L-Functions. I 1974 Akio Fujii
+ On the Zeros of Dirichlet L-Functions. III 1976 Akio Fujii
+ On the zeros of Dirichlet L-functions. IV. 1976 Akio Fujii
+ PDF Chat On the distribution of the zeros of Dirichlet's L-functions 1972 Yoichi Motohashi
+ Dirichlet 𝐿-functions 2019 Dimitris Koukoulopoulos
+ On the Zeros of Dirichlet L-functions (II) 2003 Akio Fujii
+ On the zeros of Dirichlet L-functions 2013 Guilherme França
André LeClair
+ On the Zeros of the Dirichlet L-Functions 1945 Carl Ludwig Siegel
+ PDF Chat On the zeros of a class of Dirichlet series I 1970 Bruce C. Berndt
+ PDF Chat On the Distribution of Zeros of Dirichlet's $L$-Function on the Line $\sigma=1/2$ (II) 1978 Teluhiko Hilano
+ PDF Chat On the zeros of Dirichlet L-functions (VI) 1976 Akio Fujii
+ Zeros of Dirichlet series 2015 R. C. Vaughan
+ On the zeros of a class of Dirichlet series 1955 C.G. Lekkerkerker
+ PDF Chat On the zeros of Dirichlet L-functions (VII) 1976 Akio Fujii
+ PDF Chat On the distribution of zeros of Dirichlet's $L$-function on the line $\sigma = {1 / 2}$ 1976 Teluhiko Hilano
+ PDF Chat On the mean values of an entire Dirichlet series of order zero 1980 Satendra Kumar Vaish
+ Zeros of derivatives of dirichlet L-functions 1996 C. Y. Yıldırım