Approximate multiplicative groups in nilpotent Lie groups

Type: Article

Publication Date: 2010-01-19

Citations: 16

DOI: https://doi.org/10.1090/s0002-9939-10-10078-1

Abstract

We generalize a result of Tao which describes approximate multiplicative groups in the Heisenberg group. We extend it to simply connected nilpotent Lie groups of arbitrary step.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Arbitrary Approximate Groups 2019 Matthew Tointon
+ On Freiman's Theorem in Nilpotent Groups 2009 David Fisher
Nets Hawk Katz
Irine Peng
+ Approximate groups, I: the torsion-free nilpotent case 2009 Emmanuel Breuillard
Ben Green
+ Residually Nilpotent Approximate Groups 2019 Matthew Tointon
+ Approximate groups. I The torsion-free nilpotent case 2010 Emmanuel Breuillard
Ben Green
+ The structure of approximate groups 2011 Emmanuel Breuillard
Ben Green
Terence Tao
+ PDF Chat The structure of approximate groups 2012 Emmanuel Breuillard
Ben Green
Terence Tao
+ Multiplicative Lie algebras 2019 Gary L. WALLS
+ PDF Chat Approximate Lattices and Meyer Sets in Nilpotent Lie Groups 2020 Simon Machado
+ SUBGROUP DISTORTIONS IN NILPOTENT GROUPS 2001 D. Osin
+ Introduction to Approximate Groups 2019 Matthew Tointon
+ Lie groups as multiplication groups of topological loops 2015 Ágota Figula
+ PDF Chat Quasidiagonal representations of nilpotent groups 2014 Caleb Eckhardt
+ Discrete Nilpotent Subgroups of Lie Groups 1972 M. S. Raghunathan
+ PDF Chat Discrete nilpotent subgroups of Lie groups 1969 Hsien-Chung Wang
+ Meta-Heisenberg Groups 2020 Gerald B. Folland
+ Nilpotent approximations of metabelian groups 1981 D. I. Zaitsev
+ PDF Chat Approximate Subgroups of Linear Groups 2011 Emmanuel Breuillard
Ben Green
Terence Tao
+ Approximate Groups 2019 Mauro Di Nasso
Isaac Goldbring
Martino Lupini
+ Quasidiagonal Representations of Nilpotent Groups 2013 Caleb Eckhardt