Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's

Type: Article

Publication Date: 1995-02-01

Citations: 73

DOI: https://doi.org/10.1007/bf02101534

Locations

  • Communications in Mathematical Physics - View
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A non-squeezing theorem for convex symplectic images of the Hilbert ball 2015 Alberto Abbondandolo
Pietro Majer
+ Symplectic non-squeezing in Hilbert space 2014 Alexandre Sukhov
Alexander Tumanov
+ Symplectic non-squeezing in Hilbert space and discrete Schr\"odinger equations 2014 Alexandre Sukhov
Alexander Tumanov
+ Symplectic non-squeezing in Hilbert space and discrete Schrödinger equations 2014 Alexandre Sukhov
Alexander Tumanov
+ Beltrami type equation and symplectic non-squeezing in Hilbert space 2014 Alexandre Sukhov
Alexander Tumanov
+ Lectures on Hamiltonian Methods in Nonlinear PDEs 2005 Sergei Kuksin
+ Pseudoholomorphic discs and symplectic structures in Hilbert space 2014 Alexandre Sukhov
Alexander Tumanov
+ Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrödinger equation on $\R^2$ 2016 Rowan Killip
Monica Vişan
Xiaoyi Zhang
+ PDF Chat Symplectic rigidity and Hamiltonian PDEs 2018 Jaime Bustillo
+ Symplectic non-squeezing for the Korteweg--de Vries flow on the line 2020 Maria Ntekoume
+ Hamiltonian systems and symplectic integrators 1997 Peter Görtz
Rudolf Scherer
+ Floer theory for Hamiltonian PDE using model theory 2015 Oliver Fabert
+ Topics in contact Hamiltonian systems 2023 Federico Zadra
+ A non-squeezing theorem for convex symplectic images of the Hilbert ball 2014 Alberto Abbondandolo
Pietro Majer
+ A non-squeezing theorem for convex symplectic images of the Hilbert ball 2014 Alberto Abbondandolo
Pietro Majer
+ Floer theory for Hamiltonian PDE using model theory 2015 Oliver Fabert
+ Symplectic dynamics for infinite dimensional Hamiltonian equations = 무한 차원 해밀토니안 방정식의 심플렉틱 동역학 2017 Sunghyun Hong
홍성현
+ Middle dimensional symplectic rigidity and its effect on Hamiltonian PDEs 2017 J. Bustillo
+ Middle dimensional symplectic rigidity and its effect on Hamiltonian PDEs 2017 Jaime Bustillo
+ Hamiltonian partial differential equations and Frobenius manifolds 2008 Boris Dubrovin