𝜔-chaos and topological entropy

Type: Article

Publication Date: 1993-01-01

Citations: 100

DOI: https://doi.org/10.1090/s0002-9947-1993-1108612-8

Abstract

We present a new concept of chaos, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-chaos, and prove some properties of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-chaos. Then we prove that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-chaos is equivalent to positive entropy on the interval. We also prove that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-chaos is equivalent to the definition of chaos given by Devaney on the interval.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Positive sequence topological entropy characterizes chaotic maps 1991 N. Franzová
J. Smı́tal
+ PDF Chat Chaotic functions with zero topological entropy 1986 J. Smı́tal
+ PDF Chat Positive entropy implies chaos along any infinite sequence 2022 Wen Huang
Jian Li
Xiangdong Ye
+ 𝑞-Chaos 2011 Marius Junge
Hun Hee Lee
+ Devaney’s chaos implies existence of 𝑠-scrambled sets 2004 Jiehua Mai
+ PDF Chat Periodic points and topological entropy of maps of the circle 1983 Chris Bernhardt
+ A generalization of the Lefschetz fixed point theorem and detection of chaos 1999 Roman Srzednicki
+ On the predictability of discrete dynamical systems II 2005 Nilson C. Bernardes
+ PDF Chat Paradoxical functions on the interval 1994 Vı́ctor Jiménez López
+ PDF Chat Topological entropy for noncompact sets 1973 Rufus Bowen
+ Circle maps having an infinite 𝜔-limit set which contains a periodic orbit have positive topological entropy 2003 Naotsugu Chinen
+ Exact dimensionality and projection properties of Gaussian multiplicative chaos measures 2018 K. J. Falconer
Xiong Jin
+ PDF Chat Multi-separation, centrifugality and centripetality imply chaos 1999 Jiehua Mai
+ Li-Yorke 𝑛-chaos and distributional 𝑛-chaos in Banach spaces 2023 Pengxian Zhu
Qigui Yang
+ Specification property and distributional chaos almost everywhere 2008 Piotr Oprocha
Marta Štefánková
+ ω-Chaos and Topological Entropy 1993 Shihai Li
+ For graph maps, one scrambled pair implies Li-Yorke chaos 2014 Sylvie Ruette
L’ubomı́r Snoha
+ PDF Chat Chaos, periodicity, and snakelike continua 1985 Marcy Barge
Joe Martin
+ PDF Chat Noncommutative topological dynamics. II 1984 Daniel Avitzour
+ PDF Chat Inheritance of $ {\mathscr F}- $chaos and $ {\mathscr F}- $sensitivities under an iteration for non-autonomous discrete systems 2022 JinHyon Kim
Hyonhui Ju
WiJong An