Magnetic-field-induced transition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>BaVS</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>

Type: Article

Publication Date: 2007-01-29

Citations: 7

DOI: https://doi.org/10.1103/physrevb.75.035128

Abstract

The metal-insulator transition (MIT) of ${\mathrm{BaVS}}_{3}$ is suppressed under pressure, and above the critical pressure of ${p}_{\mathrm{cr}}\ensuremath{\approx}2\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ the metallic phase is stabilized. We present the results of detailed magnetoresistivity measurements carried out at pressures near the critical value in magnetic fields up to $B=12\phantom{\rule{0.3em}{0ex}}\mathrm{T}$. We found that slightly below the critical pressure the structural tetramerization---which drives the MIT---is combined with the onset of magnetic correlations. If the zero-field transition temperature is suppressed to a sufficiently low value $({T}_{\mathrm{MI}}\ensuremath{\le}15\phantom{\rule{0.3em}{0ex}}\mathrm{K})$, the system can be driven into the metallic state by application of magnetic field. The main effect is not the reduction of ${T}_{\mathrm{MI}}$ with increasing $B$, but rather the broadening of the transition due to the applied magnetic field. We tentatively ascribe this phenomenon to the influence on the magnetic structure coupled to the bond order of the tetramers.

Locations

  • arXiv (Cornell University) - View - PDF
  • OPUS (Augsburg University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Mn</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:mi>Nb</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> : Magnetic and magnetotransport properties at ambient pressure and ferro- to antiferromagnetic transition under pressure 2020 S. Polesya
S. Mankovsky
H. Ebert
Pavel G. Naumov
M. A. ElGhazali
Walter Schnelle
Sergey A. Medvedev
Sebastian Mangelsen
Wolfgang Bensch
+ PDF Chat Bandwidth controlled insulator-metal transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>BaFe</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> : A Mössbauer study under pressure 2019 Philipp Materne
Wenli Bi
Jiyong Zhao
Michael Y. Hu
M. L. Amigó
S. Seiro
Saicharan Aswartham
B. Büchner
Esen Ercan
+ PDF Chat Structural, magnetic, and insulator-to-metal transitions under pressure in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ga</mml:mi><mml:msub><mml:mi mathvariant="normal">V</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>8</mml:mn></mml:msub></mml:mrow></mml:math> Mott insulator: A rich phase diagram up to 14.7 GPa 2019 J. Mokdad
G. Knebel
C. Marı́n
Jean‐Pascal Brison
V. Ta Phuoc
R. Sopracase
Claire V. Colin
D. Braithwaite
+ PDF Chat Pressure dependence of the spin gap in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">BaVS</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2001 I. Kézsmárki
Sz. Csonka
H. Berger
L. Forró
P. Fazekas
G. Mihály
+ PDF Chat Effect of pressure on the magnetostructural transition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SrFe</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mtext>As</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> 2008 Manoj Kumar
M. Nicklas
Anton Jesche
N. Caroca‐Canales
M. Schmitt
M. Hanfland
Deepa Kasinathan
Ulrich Schwarz
H. Rösner
C. Geibel
+ PDF Chat Pressure-induced insulating state in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>(</mml:mo><mml:mi mathvariant="normal">L</mml:mi><mml:mi mathvariant="normal">a</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal">S</mml:mi><mml:mi mathvariant="normal">r</mml:mi><mml:mo>)</mml:mo><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CoO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2004 R. Lengsdorf
M. Ait-Tahar
S. S. Saxena
M. Ellerby
D. I. Khomskii
H. Micklitz
T. Lorenz
M. M. Abd-Elmeguid
+ PDF Chat Temperature- and pressure-dependent metallic states in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="bold">BEDT</mml:mi><mml:mo>−</mml:mo><mml:mi mathvariant="bold">TTF</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:msub><mml:mrow /><mml:mrow><mml:mn>8</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">[</mml:mo><mml:msub><mml:mi mathvariant="bold">Hg</mml:mi><mml:mrow><mml:mn>4</mml:mn></mml:mrow… 2011 Alain Audouard
F. Duc
David Vignolles
R. B. Lyubovskiǐ
Laure Vendier
Gena V. Shilov
E. I. Zhilyaeva
Rimma N. Lyubovskaya
Enric Cañadell
+ PDF Chat Magnetic reshuffling and feedback on superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>UTe</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> under pressure 2021 Michal Vališka
W. Knafo
G. Knebel
G. Lapertot
Dai Aoki
D. Braithwaite
+ PDF Chat Pressure-induced dimerization and collapse of antiferromagnetism in the Kitaev material <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>α</mml:mi><mml:mtext>−</mml:mtext><mml:msub><mml:mi>Li</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>IrO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> 2022 Bin Shen
Franziska Breitner
Danil Prishchenko
R.S. Manna
Anton Jesche
Maximilian L. Seidler
P. Gegenwart
Alexander A. Tsirlin
+ PDF Chat Pressure Induced Quantum Critical Point and Non-Fermi-Liquid Behavior in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>BaVS</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2000 L. Forró
R. Gaál
H. Berger
P. Fazekas
Karlo Penc
I. Kézsmárki
G. Mihály
+ PDF Chat Macroscopically inhomogeneous state at the boundary between the superconducting, antiferromagnetic, and metallic phases in quasi-one-dimensional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>(</mml:mo><mml:mi mathvariant="normal">TMTSF</mml:mi><mml:mrow><mml:msub><mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">PF</mml:mi></mml:mrow><mml:mrow><mml:mn>6… 2004 А. В. Корнилов
V. M. Pudalov
Y. Kitaoka
K. Ishida
Guo‐qing Zheng
T. Mito
J. S. Qualls
+ PDF Chat Pressure-induced spin-state ordering in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>CoO</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi mathvariant="normal">F</mml:mi></mml:mrow></mml:math> 2019 J. Fernández Afonso
Andrii Sotnikov
Atsushi Hariki
J. Kuneš
+ PDF Chat Simultaneous suppression of superconductivity and structural phase transition under pressure in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ca</mml:mi></mml:mrow><mml:mn>10</mml:mn></mml:msub><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ir</mml:mi></mml:mrow><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mi mathvariant="normal">As</mml:mi></mml:mrow><mml:mn>8</mml:mn></mml:msub><mml:mo>)</mml:mo><mml:mo… 2014 Shunsaku Kitagawa
Shingo Araki
Tatsuo C. Kobayashi
Hiroyuki Ishii
Kazunori Fujimura
Daisuke Mitsuoka
K. Kudo
M. Nohara
+ PDF Chat Pressure-driven metal-insulator transition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>from dynamical mean-field theory 2015 А. О. Шориков
A. V. Lukoyanov
В. И. Анисимов
Sergey Y. Savrasov
+ PDF Chat Pressure-induced suppression of the spin-gapped insulator phase in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Ba</mml:mi><mml:mi mathvariant="normal">V</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>: An infrared optical study 2005 I. Kézsmárki
G. Mihály
R. Gaál
N. Barišić
H. Berger
L. Forró
C. C. Homes
L. Mihály
+ Field-induced spin-density wave in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>TMTSF</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> 2005 David Vignolles
Alain Audouard
Marc Nardone
L. Brossard
Sabrina Bouguessa
Jean‐Marc Fabre
+ PDF Chat Pressure induced change in the electronic state of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ta</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi>Pd</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>16</mml:mn></mml:msub></mml:mrow></mml:math> 2017 Na Hyun Jo
Li Xiang
Udhara S. Kaluarachchi
Morgan W. Masters
Kathryn M. Neilson
Savannah S. Downing
P. C. Canfield
Sergey L. Bud’ko
+ PDF Chat Magnetic phase transition at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>88</mml:mn><mml:mspace width="0.3em" /><mml:mi mathvariant="normal">K</mml:mi></mml:mrow></mml:math>in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Na</mml:mi><mml:mn>0.5</mml:mn></mml:msub><mml:mi mathvariant="normal">Co</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml… 2005 Bill Pedrini
J. L. Gavilano
S. Weyeneth
E. Felder
J. Hinderer
Martin Weller
H. R. Ott
С. М. Казаков
J. Karpiński
+ PDF Chat Variations of magnetic properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>UGa</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>under pressure 2015 A. Kolomiets
J.‐C. Griveau
J. Prchal
А. В. Андреев
L. Havela
+ PDF Chat Appearance of pressure-induced superconductivity in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>BaFe</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mtext>As</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>under hydrostatic conditions and its extremely high sensitivity to uniaxial stress 2010 Takehiro Yamazaki
Nao Takeshita
Ryosuke Kobayashi
Hideto Fukazawa
Yoh Kohori
Kunihiro Kihou
Chul‐Ho Lee
T. Ito
Akira Iyo
Hiroshi Eisaki

Works Cited by This (9)

Action Title Year Authors
+ PDF Chat Pressure-induced suppression of the spin-gapped insulator phase in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Ba</mml:mi><mml:mi mathvariant="normal">V</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>: An infrared optical study 2005 I. Kézsmárki
G. Mihály
R. Gaál
N. Barišić
H. Berger
L. Forró
C. C. Homes
L. Mihály
+ PDF Chat Correlation Effects on the Double Exchange Model in a Ferromagnetic Metallic Phase 2000 Yoshiki Imai
Norio Kawakami
+ PDF Chat Pressure dependence of the spin gap in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">BaVS</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2001 I. Kézsmárki
Sz. Csonka
H. Berger
L. Forró
P. Fazekas
G. Mihály
+ PDF Chat Separation of Orbital Contributions to the Optical Conductivity of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>BaVS</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> 2006 I. Kézsmárki
G. Mihály
R. Gaál
N. Barišić
Ana Akrap
H. Berger
L. Forró
C. C. Homes
L. Mihály
+ PDF Chat Pressure Induced Quantum Critical Point and Non-Fermi-Liquid Behavior in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>BaVS</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2000 L. Forró
R. Gaál
H. Berger
P. Fazekas
Karlo Penc
I. Kézsmárki
G. Mihály
+ PDF Chat Structural aspects of the metal-insulator transition in BaVS3 2005 Sébastien Fagot
P. Foury-Leylekian
S. Ravy
Jean‐Paul Pouget
M. Anne
Guerman Popov
Maxim V. Lobanov
M. Greenblatt
+ PDF Chat Orbitally driven spin pairing in the three-dimensional nonmagnetic Mott insulator<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">BaVS</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>:</mml:mo></mml:math>Evidence from single-crystal studies 2000 G. Mihály
I. Kézsmárki
F. Zámborszky
M. Miljak
Karlo Penc
P. Fazekas
H. Berger
L. Forró
+ PDF Chat Quantum Mott Transition and Superconductivity 2005 Masatoshi Imada
+ PDF Chat Quantum Mott Transition and Multi-Furcating Criticality 2004 Masatoshi Imada