The weak-type (1,1) of Fourier integral operators of order –(<i>n</i>–1)/2

Type: Article

Publication Date: 2004-02-01

Citations: 43

DOI: https://doi.org/10.1017/s1446788700008661

Abstract

Abstract Let T be a Fourier integral operator on R n of order–( n –1)/2. Seeger, Sogge, and Stein showed (among other things) that T maps the Hardy space H 1 to L 1 . In this note we show that T is also of weak-type (1, 1). The main ideas are a decomposition of T into non-degenerate and degenerate components, and a factorization of the non-degenerate portion.

Locations

  • Journal of the Australian Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • Journal of the Australian Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • Journal of the Australian Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ The weak-type $(1,1)$ of Fourier integral operators of order $-(n-1)/2$ 2002 Terence Tao
+ A local-to-global weak (1,1) type argument and applications to Fourier integral operators 2021 Duván Cardona
Michael Ruzhansky
+ PDF Chat The weak (1,1) boundedness of Fourier integral operators with complex phases 2024 Duván Cardona
Michael Ruzhansky
+ Weak-type (1,1) estimates for strongly singular operators 2018 Magali Folch-Gabayet
Ricardo A. Sáenz
+ Weak-type (1,1) estimates for strongly singular operators 2018 Magali Folch-Gabayet
Ricardo A. Sáenz
+ PDF On the <i>L</i><sup>1</sup>-convergence of Fourier transforms 1996 Dăng Vũ Giang
Ferenc Móricz
+ The weak (1,1) type of Fourier integral operators with complex phases 2021 Duván Cardona
Michael Ruzhansky
+ PDF Chat Sharpness of Seeger-Sogge-Stein orders for the weak (1,1) boundedness of Fourier integral operators 2021 Duván Cardona
Michael Ruzhansky
+ Sharpness of Seeger-Sogge-Stein orders for the weak (1,1) boundedness of Fourier integral operators 2021 Duván Cardona
Michael Ruzhansky
+ PDF Sharpness of Seeger-Sogge-Stein orders for the weak (1,1) boundedness of Fourier integral operators 2022 Duván Cardona
Michael Ruzhansky
+ $$\alpha $$-Bernstein-Integral Type Operators 2023 Jyoti Yadav
S. A. Mohiuddine
Arun Kajla
Abdullah Alotaibi
+ PDF Chat A Seeger–Sogge–Stein theorem for bilinear Fourier integral operators 2014 Salvador Rodríguez-López
David Rule
Wolfgang Staubach
+ <i>H</i> <sup> <i>s</i> </sup>-Boundedness of a class of Fourier Integral Operators 2021 Omar Farouk Aid
Abderrahmane Senoussaoui
+ Weakly \theta-\beta-I-Continuous Functions 2011 Bhuvaneswari
+ Fourier integral operators and Weyl-Hörmander calculus 1997 Jean-Michel Bony
+ Riesz Transform Characterizations of Hardy Spaces Associated to Degenerate Elliptic Operators 2015 Dachun Yang
Junqiang Zhang
+ PDF Chat Fourier integral operators on Hardy spaces with Hormander class 2024 Xiaofeng Ye
Chunjie Zhang
Zhu Xiang-rong
+ <i>The Fourier Integral and Its Applications</i> 1963 A. Papoulis
A. A. Maradudin
+ Calderón-Zygmund Type Operators on Weight Weak Hardy Spaces over R~n 2001 Quek Tong
Yang Da
+ PDF Chat $(L^{\infty},{\rm BMO})$ estimates and $(H^{1},L^{1})$ estimates for Fourier integral operators with symbol in $S^{m}_{0,\delta}$ 2024 Guangqing Wang
Suixin He