Efficient algorithm for optimizing data-pattern tomography

Type: Article

Publication Date: 2014-05-23

Citations: 11

DOI: https://doi.org/10.1103/physreva.89.054102

Abstract

We give a detailed account of an efficient search algorithm for the data-pattern tomography proposed by J. Rehacek, D. Mogilevtsev, and Z. Hradil [Phys. Rev. Lett. 105, 010402 (2010)], where the quantum state of a system is reconstructed without a priori knowledge about the measuring setup. The method is especially suited for experiments involving complex detectors, which are difficult to calibrate and characterize. We illustrate the approach with the case study of the homodyne detection of a nonclassical photon state.

Locations

  • Physical Review A - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Bayesian recursive data-pattern tomography 2015 Alexander Mikhalychev
D. Mogilevtsev
Yong Siah Teo
J. Řeháček
Z. Hradil
+ Bayesian recursive data pattern tomography 2015 Alexander Mikhalychev
D. Mogilevtsev
Yong Siah Teo
J. Řeháček
Z. Hradil
+ Bayesian recursive data pattern tomography 2015 Alexander Mikhalychev
D. Mogilevtsev
Yong Siah Teo
J. Řeháček
Z. Hradil
+ PDF Chat Data Pattern Tomography of Entangled States 2017 Vadim Reut
Alexander Mikhalychev
D. Mogilevtsev
+ PDF Chat Data-pattern tomography of entangled states 2017 Vadim Reut
Alexander Mikhalychev
D. Mogilevtsev
+ PDF Chat Efficient tomography with unknown detectors 2017 L. Motka
Martin Paúr
J. Řeháček
Z. Hradil
L. L. Sánchez-Soto
+ PDF Chat Selective and efficient quantum process tomography 2009 Ariel Bendersky
Fernando Pastawski
Juan Pablo Paz
+ PDF Chat Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data 2013 Pierre Alquier
Katia Méziani
Gabriel Peyré
+ PDF Chat Optimal Quantum Tomography 2009 Alessandro Bisio
Giulio Chiribella
Giacomo Mauro D’Ariano
Stefano Facchini
Paolo Perinotti
+ PDF Chat Homodyne Tomography and the Reconstruction of Quantum States of Light 2007 Giacomo Mauro D’Ariano
Lorenzo Maccone
Massimiliano F. Sacchi
+ Design of Optimal Dynamic Analyzers: Mathematical Aspects of Wave Pattern Recognition 2004 V. P. Belavkin
V. P. Maslov
+ Quantum Tomography 2003 Giacomo Mauro D’Ariano
Matteo G. A. Paris
Massimiliano F. Sacchi
+ Quantum Tomography 2003 Giacomo Mauro D’Ariano
Matteo G. A. Paris
Massimiliano F. Sacchi
+ PDF Chat High-dimensional methods for quantum homodyne tomography 2022 Nicola Mosco
Lorenzo Maccone
+ PDF Chat A two-stage solution to quantum process tomography: error analysis and optimal design 2024 Shuixin Xiao
Yuanlong Wang
Jun Zhang
Daoyi Dong
Gary J. Mooney
Ian R. Petersen
Hidehiro Yonezawa
+ High-Dimensional Methods for Quantum Homodyne Tomography 2021 Nicola Mosco
Lorenzo Maccone
+ PDF Chat Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data 2008 Katia Méziani
+ PDF Chat Efficient Quantum Tomography Needs Complementary and Symmetric Measurements 2012 Dėnes Petz
László Ruppert
+ PDF Chat Statistical analysis of sampling methods in quantum tomography 2012 T. Kiesel
+ PDF Chat Efficient tomography of a quantum many-body system 2017 B. P. Lanyon
Christine Maier
Milan Holzäpfel
Tillmann Baumgratz
Cornelius Hempel
Petar Jurcevic
Ish Dhand
Anton S. Buyskikh
Andrew J. Daley
M. Cramer