Upper bounds for ergodic sums of infinite measure preserving transformations

Type: Article

Publication Date: 1990-01-01

Citations: 14

DOI: https://doi.org/10.1090/s0002-9947-1990-1024766-3

Abstract

For certain conservative, ergodic, infinite measure preserving transformations <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we identify increasing functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for which <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="limit sup StartFraction 1 Over upper A left-parenthesis n right-parenthesis EndFraction sigma-summation Underscript k equals 1 Overscript n Endscripts f ring upper T Superscript k Baseline equals integral Underscript upper X Endscripts f d mu a period e period"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo form="prefix">lim sup</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>A</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:munderover> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:munderover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>f</mml:mi> <mml:mo>∘<!-- ∘ --></mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>k</mml:mi> </mml:msup> </mml:mrow> <mml:mo>=</mml:mo> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>X</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>f</mml:mi> <mml:mi>d</mml:mi> <mml:mi>μ<!-- μ --></mml:mi> </mml:mrow> <mml:mspace width="1em" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>a</mml:mtext> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>.e</mml:mtext> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>.</mml:mtext> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\limsup \limits _{n \to \infty } \frac {1} {{A(n)}}\sum \limits _{k = 1}^n {f \circ } {T^k} = \int _X {fd\mu } \quad {\text {a}}{\text {.e}}{\text {.}}</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> holds for any nonnegative integrable function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular the results apply to some Markov shifts and number-theoretic transformations, and include the other law of the iterated logarithm.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Second order ergodic theorems for ergodic transformations of infinite measure spaces 1992 Jon Aaronson
Manfred Denker
Albert M. Fisher
+ PDF Chat Upper Bounds for Ergodic Sums of Infinite Measure Preserving Transformations 1990 Jon Aaronson
Manfred Denker
+ PDF Chat On ergodic sequences of measures 1975 J. R. Blum
Robert Cogburn
+ PDF Chat Ergodic properties that lift to compact group extensions 1988 E. Arthur Robinson
+ On 𝑑-parameter pointwise ergodic theorems in 𝐿₁ 1995 Shigeru Hasegawa
Ryōtarō Satō
+ PDF Chat Continuous ergodic measures on 𝑅^{∞} have disjoint powers 1977 Marek Kanter
+ Ergodic functions over <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">[</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy="false">]</mml:mo><mml:mo stretchy="false">]</mml:mo></mml:math> 2018 Zifeng Yang
+ PDF Chat Weighted ergodic theorems for mean ergodic 𝐿₁-contractions 1998 Doğan Çömez
Michael Lin
J. Olsen
+ PDF Chat On the dominated ergodic theorem in 𝐿₂ space 1974 M. A. Akcoglu
Louis Sucheston
+ PDF Chat Strong uniform distributions and ergodic theorems 1975 J. R. Blum
L. Hahn
+ Strongly ergodic actions have local spectral gap 2018 Amine Marrakchi
+ PDF Chat Uniform convergence of ergodic limits and approximate solutions 1992 Sen-Yen Shaw
+ PDF Chat A companion to the Oseledec multiplicative ergodic theorem 1987 Joseph C. Watkins
+ A shrinking target theorem for ergodic transformations of the unit interval 2022 Shrey Sanadhya
+ An uncountable family of nonorbit equivalent actions of 𝔽_{𝕟} 2005 Damien Gaboriau
Sorin Popa
+ PDF Chat Mean ergodic theorems for nonlinear operators 1990 Rainer Wittmann
+ PDF Chat Noninvertible transformations admitting no absolutely continuous 𝜎-finite invariant measure 1991 Jane M. Hawkins
Cesar E. Silva
+ Mixing Limit Theorems for Ergodic Transformations 2007 Roland Zweimüller
+ PDF Chat Finite generators for ergodic, measure-preserving transformations 1974 Manfred Denker
+ PDF Chat Ergodic undefinability in set theory and recursion theory 1981 Daniele Mundici