Eigenvalue spectra of complex networks

Type: Article

Publication Date: 2005-10-12

Citations: 91

DOI: https://doi.org/10.1088/0305-4470/38/43/003

Abstract

We examine the eigenvalue spectrum, ρ(μ), of the adjacency matrix of a random scale-free network with an average of p edges per vertex using the replica method. We show how in the dense limit, when p → ∞, one can obtain two relatively simple coupled equations whose solution yields ρ(μ) for an arbitrary complex network. For scale-free graphs, with degree distribution exponent λ, we obtain an exact expression for the eigenvalue spectrum when λ = 3 and show that ρ(μ) ~ 1/μ2λ−1 for large μ. In the limit λ → ∞ we recover known results for the Erdos–Renyi random graph.

Locations

  • Journal of Physics A Mathematical and General - View
  • Brunel University Research Archive (BURA) (Brunel University London) - View - PDF

Similar Works

Action Title Year Authors
+ Eigenvalue spectra and stability of directed complex networks 2022 Joseph W. Baron
+ PDF Chat Eigenvalue spectra and stability of directed complex networks 2022 Joseph W. Baron
+ PDF Chat Spectral densities of scale-free networks 2007 D. Kim
B. Kahng
+ Assortative mixing by degree makes a network more unstable 2005 Markus Brede
Sitabhra Sinha
+ Spectral properties of complex networks 2008 Ginestra Bianconi
+ PDF Chat Eigenvalue ratio statistics of complex networks: Disorder versus randomness 2022 Ankit Mishra
Tanu Raghav
Sarika Jalan
+ PDF Chat Spectral density of complex networks with a finite mean degree 2008 Taro Nagao
G. J. Rodgers
+ Complex networks 2015 G. J. Rodgers
Taro Nagao
+ Analytic solution of the resolvent equations for heterogeneous random graphs: spectral and localization properties 2022 Jeferson D. Silva
Fernando L. Metz
+ PDF Chat Spectral properties of complex networks 2018 Camellia Sarkar
Sarika Jalan
+ PDF Chat Dynamical scaling behavior of percolation clusters in scale-free networks 2004 F. Jasch
Christian von Ferber
A. Blumen
+ Eigenvalues of Random Power law Graphs 2003 Fan Chung
Linyuan Lü
Van Vu
+ PDF Chat Analytic solution of the resolvent equations for heterogeneous random graphs: spectral and localization properties 2022 Jeferson D. Silva
Fernando L. Metz
+ Laplacian spectral properties of complex networks 2010 Juan Chen
Jun-an Lu
+ Random networks: eigenvalue spectra 2004 S. N. Dorogovt︠s︡ev
A. V. Goltsev
J. F. F. Mendes
A. N. Samukhin
+ PDF Chat A complex network analysis on the eigenvalue spectra of random spin systems 2024 Qiaomu Xue
Wen-Jia Rao
+ PDF Chat Spectra and eigenvectors of scale-free networks 2001 K.-I. Goh
B. Kahng
D. Kim
+ Eigenvalues for the transition matrix of a small-world scale-free network: Explicit expressions and applications 2015 Zhongzhi Zhang
Lin Yuan
Xiaoye Guo
+ PDF Chat Random matrix analysis of complex networks 2007 Sarika Jalan
Jayendra N. Bandyopadhyay
+ PDF Chat Bulk eigenvalue fluctuations of sparse random matrices 2020 Yukun He