ON THE RELAXATION BEHAVIORS OF SLOW AND CLASSICAL GLITCHES: OBSERVATIONAL BIASES AND THEIR OPPOSITE RECOVERY TRENDS

Type: Article

Publication Date: 2013-10-31

Citations: 4

DOI: https://doi.org/10.1088/0004-637x/778/1/31

Abstract

We study the pulsar timing properties and the data analysis methods of glitch recoveries. In some cases one first fits the times of arrival (TOAs) to obtain the "time-averaged" frequency ν and its first derivative , and then fits models to them. However, our simulations show that ν and obtained in this way are systematically biased unless the time intervals between the nearby data points of TOAs are smaller than about 104 s, which is much shorter than typical observation intervals. Alternatively, glitch parameters can be obtained by fitting the phases directly with relatively smaller biases, but the initial recovery time scale is usually chosen by eye, which may introduce a strong bias. We also construct a phenomenological model by assuming a pulsar spin-down law of with G(t) = 1 + κe−t/τ for a glitch recovery, where H0 is a constant and κ and τ are the glitch parameters to be found. This model can reproduce the observed data of slow glitches from B1822−09 and the giant classical glitch of B2334+61, with κ < 0 or κ > 0, respectively. We then use this model to simulate TOA data and test several fitting procedures for a glitch recovery. The best procedure is (1) to use a very high order polynomial (e.g., to 50th order) to precisely describe the phase, (2) obtain ν(t) and from the polynomial, then (3) obtain the glitch parameters from ν(t) or . Finally, the uncertainty in the starting time t0 of a classical glitch causes uncertainties in some glitch parameters, but less so for a slow glitch, t0, of which can be determined from data.

Locations

  • The Astrophysical Journal - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat A multi-band study of pulsar glitches with Fermi-LAT and Parkes 2024 P. Liu
J. P. Yuan
Mingyu Ge
W. -T. Ye
Shiqi Zhou
S. J. Dang
Zheming Zhou
Erbil Gugercinoglu
Zhiqin Tu
P. Wang
+ PDF Chat Measuring glitch recoveries and braking indices with Bayesian model selection 2024 Yang Liu
M. J. Keith
D. Antonopoulou
P. Weltevrede
Benjamin Shaw
B. W. Stappers
A. G. Lyne
M. B. Mickaliger
Avishek Basu
+ PDF Chat Measuring glitch recoveries and braking indices with Bayesian model selection 2024 Y Liu
M. J. Keith
D. Antonopoulou
P. Weltevrede
Benjamin Shaw
B. W. Stappers
A. G. Lyne
M. B. Mickaliger
Avishek Basu
+ 31 Glitches in Twelve Radio Pulsars 2018 Shiqi Zhou
J. P. Yuan
Jiawang Zhang
M. Q. Liu
Z. W. Feng. S. J. Dang
Xun Zhu
+ PDF Chat Timing irregularities and glitches from the pulsar monitoring campaign at IAR 2024 Ezequiel Zubieta
Federico García
S. del Palacio
S. B. Araujo Furlan
G. Gancio
C. O. Loustó
J. A. Combi
C. M. Espinoza
+ PDF Chat Timing irregularities and glitches from the pulsar monitoring campaign at IAR 2024 Ezequiel Zubieta
Federico García
S. del Palacio
S. B. Araujo Furlan
G. Gancio
C. O. Loustó
J. A. Combi
C. M. Espinoza
+ PDF Chat Discovery of Delayed Spin-up Behavior Following Two Large Glitches in the Crab Pulsar, and the Statistics of Such Processes 2020 Mingyu Ge
Shuang‐Nan Zhang
F. J. Lu
Tong Li
J. P. Yuan
X. P. Zheng
Y. Huang
S. J. Zheng
Yu-Peng Chen
Zhi Chang
+ Delayed spin-up and persistent shift phenomena of Crab pulsar glitches: two sides of the same coin? 2019 Weihua Wang
Xiaoping Zheng
+ PDF Chat Characterizing the rotational irregularities of the Vela pulsar from 21 yr of phase-coherent timing 2016 R. M. Shannon
L. Lentati
M. Kerr
S. Johnston
G. Hobbs
R. N. Manchester
+ PDF Chat Detection of 107 glitches in 36 southern pulsars 2012 Meng Yu
R. N. Manchester
G. Hobbs
S. Johnston
V. M. Kaspi
M. J. Keith
A. G. Lyne
G. J. Qiao
Vikram Ravi
John Sarkissian
+ PDF Chat Observations of four glitches in the young pulsar J1833−1034 and study of its glitch activity 2012 Jayanta Roy
Yashwant Gupta
W. Lewandowski
+ PDF Chat Pulsar glitch activities: the spin parameters approach 2024 Innocent O. Eya
Evaristus Uzochukwu Iyida
+ PDF Chat Pulsar glitch activities: the spin parameters approach 2024 Innocent O. Eya
Evaristus Uzochukwu Iyida
+ PDF Chat Timing of young radio pulsars – II. Braking indices and their interpretation 2020 A. Parthasarathy
S. Johnston
R. M. Shannon
L. Lentati
M. Bailes
Shi Dai
M. Kerr
R. N. Manchester
S. Osłowski
C. Sobey
+ The impact of glitches on young pulsar rotational evolution 2021 M. E. Lower
S. Johnston
Liam Dunn
R. M. Shannon
M. Bailes
Shi Dai
M. Kerr
R. N. Manchester
A. Melatos
L S Oswald
+ The Jodrell Bank Glitch Catalogue: 106 new rotational glitches in 70 pulsars. 2021 Avishek Basu
Benjamin Shaw
D. Antonopoulou
M. J. Keith
A. G. Lyne
M. B. Mickaliger
B. W. Stappers
P. Weltevrede
C. A. Jordan
+ PDF Chat Observed glitches in 8 young pulsars 2019 Avishek Basu
B. C. Joshi
M. A. Krishnakumar
D. Bhattacharya
Rana Nandi
Debades Bandhopadhay
Prasanta Char
P. K. Manoharan
+ PDF Chat A non-glitch speed-up event in the Crab Pulsar 2017 M. Vivekanand
+ PDF Chat Glitches in southern pulsars 2000 Na Wang
R. N. Manchester
R. Pace
M. Bailes
V. M. Kaspi
B. W. Stappers
A. G. Lyne
+ PDF Chat A Series of (Net) Spin-down Glitches in PSR J1522-5735: Insights from the Vortex Creep and Vortex Bending Models 2024 Shiqiang Zhou
W. T. Ye
Mei Ge
Erbil Gugercinoglu
S. J. Zheng
Chaoqun Yu
J. P. Yuan
Jie Zhang