Long time solutions for wave maps with large data

Type: Preprint

Publication Date: 2012-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.1207.5591

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat LONG TIME SOLUTIONS FOR WAVE MAPS WITH LARGE DATA 2013 Jinhua Wang
Pin Yu
+ Small data global existence and decay for two dimensional wave maps 2017 Willie Wai-Yeung Wong
+ Global Well-Posedness For Half-Wave Maps With $S^2$ and $\mathbb{H}^2$ Targets For Small Smooth Initial Data 2021 Yang Liu
+ PDF Chat Global Well-Posedness For Half-Wave Maps With $ S^2 $ and $ \mathbb{H}^2 $ Targets For Small Smooth Initial Data 2022 Yang Liu
+ Small data global regularity for half-wave maps in $n = 4$ dimensions 2019 Anna Kiesenhofer
Joachim Krieger
+ Small data global regularity for half-wave maps in $n = 4$ dimensions 2019 Anna Kiesenhofer
Joachim Krieger
+ PDF Chat Global Well-Posedness and Soliton Resolution for the Half-Wave Maps Equation with Rational Data 2024 Patrick Gérard
Enno Lenzmann
+ A Large Data Regime for non-linear Wave Equations 2012 Jinhua Wang
Pin Yu
+ PDF Chat Global existence of wave maps in $1 + 2$ dimensions with finite energy data 1996 Stefan Müller
Michaël Struwe
+ Life span of small solutions to a system of wave equations 2015 Kunio Hidano
Kazuyoshi Yokoyama
+ Local and global well-posedness of wave maps on $\R^{1+1}$ for rough data 1998 Marcus Keel
Terence Tao
+ None 2002 Jalal Shatah
Michaël Struwe
+ Small data global existence and decay for two dimensional wave maps 2017 Willie Wai-Yeung Wong
+ Stability of geodesic wave maps 2008 Viktor Grigoryan
+ On classical global solutions of nonlinear wave equations with large data 2014 Shuang Miao
Long Pei
Pin Yu
+ PDF Chat A large data regime for nonlinear wave equations 2016 Jinhua Wang
Pin Yu
+ PDF Chat Large time existence for $3D$ water-waves and asymptotics 2007 Borys Álvarez-Samaniego
David Lannes
+ An alternative proof for small energy implies regularity for radially symmetric $$(1+2)$$-dimensional wave maps 2024 N. Lai
Yi Zhou
+ Global existence for quasilinear wave equations close to Schwarzschild 2016 Hans Lindblad
Mihai Tohaneanu
+ Global existence for quasilinear wave equations close to Schwarzschild 2016 Hans Lindblad
Mihai Tohaneanu