Operators on Banach spaces taking compact sets inside ranges of vector measures

Type: Article

Publication Date: 1992-01-01

Citations: 12

DOI: https://doi.org/10.1090/s0002-9939-1992-1110552-x

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be real Banach spaces. We prove that an operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> maps compact subsets of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into subsets of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that lie inside ranges of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued measures if and only if its dual operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>T</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{T^ * }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> factors through a subspace of an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 1 Baseline left-parenthesis mu right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^1}(\mu )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-space. In fact, we prove that every compact is taken into a subset of a compact range. We also prove that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>T</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{T^ * }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding="application/x-tex">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-summing if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> maps compact subsets into subsets of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> lying inside ranges of vector measures with bounded variation.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Banach spaces in which every compact lies inside the range of a vector measure 1992 Cándido Piñeiro
Luis Rodríguez–Piazza
+ PDF Chat On weakly compact operators on spaces of vector valued continuous functions 1986 Fernando Bombal
+ PDF Chat An example in the space of bounded operators from 𝐶(𝑋) to 𝐶(𝑌) 1973 Samuel Kaplan
+ PDF Chat A note on the extension of compact operators 1977 Åsvald Lima
+ Vector measure Banach spaces containing a complemented copy of 𝑐₀ 2004 A. Picón
Cándido Piñeiro
+ On the range of a vector measure 2020 José Rodríguez
+ Multiplication operators on vector-valued function spaces 2013 Hülya Duru
Arkady Kitover
Mehmet Orhon
+ PDF Chat Banach spaces in which every 𝑝-weakly summable sequence lies in the range of a vector measure 1996 Cándido Piñeiro
+ PDF Chat An application of Banach limits 1988 Zaheer Ahmad
Mursaleen
+ PDF Chat Euclidean Structures and Operator Theory in Banach Spaces 2023 N. J. Kalton
Emiel Lorist
Lutz Weis
+ PDF Chat A note on sequences lying in the range of a vector measure valued in the bidual 1998 B. Marchena
Cándido Piñeiro
+ PDF Chat Compact and weakly compact composition operators on spaces of vector valued continuous functions 1987 Raj Singh
W. H. Summers
+ PDF Chat Almost linearity of 𝜀-bi-Lipschitz maps between real Banach spaces 1996 Kil-Woung Jun
Dal-Won Park
+ Banach-Stone theorem for Banach lattice valued continuous functions 2007 Zafer Ercan
Süleyman Önal
+ Reflexivity for spaces of regular operators on Banach lattices 2022 Yongjin Li
Qingying Bu
+ PDF Chat Composition operators between algebras of differentiable functions 1993 Joaquín M. Gutiérrez
José G. Llavona
+ PDF Chat Tensor products of vector measures and sequences in the range of a vector measure 1996 Juan Carlos Garcı́a-Vázquez
+ PDF Chat Extensions of certain compact operators on vector-valued continuous functions 1988 Surjit Singh Khurana
+ PDF Chat An alternating procedure for operators on 𝐿_{𝑝} spaces 1987 M. A. Akcoglu
Louis Sucheston
+ PDF Chat Locally finite-dimensional sets of operators 1993 Leonya Livshits