Multiply Quasiplatonic Riemann Surfaces

Type: Article

Publication Date: 2003-01-01

Citations: 16

DOI: https://doi.org/10.1080/10586458.2003.10504514

Abstract

The aim of this article is the study of the circumstances under which a compact Riemann surface may contain two regular dessin d'enfants of different types. In terms of Fuchsian groups, an equivalent condition is the uniformizing group being normally contained in several different triangle groups. The question is answered in a graph-theoretical way, providing algorithms that decide if a surface that carries a regular dessin (a quasiplatonic surface) can also carry other regular dessins. The multiply quasiplatonic surfaces are then studied depending on their arithmetic character. Finally, the surfaces of lowest genus carrying a large number of nonarithmetic regular dessins are computed.

Locations

  • Experimental Mathematics - View
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ How many quasiplatonic curves? 2019 Jan‐Christoph Schlage‐Puchta
Jürgen Wolfart
+ How many quasiplatonic curves 2019 Jan‐Christoph Schlage‐Puchta
Jürgen Wolfart
+ Hypermaps and multiply quasiplatonic Riemann surfaces 2011 Gareth Jones
+ PDF Chat Hypermaps and multiply quasiplatonic Riemann surfaces 2012 Gareth A. Jones
+ Hypermaps and multiply quasiplatonic Riemann surfaces 2011 Gareth A. Jones
+ Quasiplatonic Surfaces, and Automorphisms 2016 Gareth A. Jones
Jürgen Wolfart
+ PDF Chat Coverings of Groups, Regular Dessins, and Surfaces 2024 Jiyong Chen
Wenwen Fan
Cai Heng Li
Yan Zhou Zhu
+ Regular dessins with a given automorphism group 2014 Gareth A. Jones
+ Regular dessins with a given automorphism group 2013 Gareth Jones
+ Dessins and Triangle Groups 2016 Gareth A. Jones
Jürgen Wolfart
+ PDF Chat Introduction to Compact Riemann Surfaces and Dessins d’Enfants 2011 Ernesto Girondo
Gabino González-Diez
+ Topics on Riemann Surfaces and Fuchsian Groups 2001 E. Bujalance
Antonio F. Costa
Ernesto Martínez
+ Introduction arithmetic of Fuchsian groups 2001 Colin M. MacLachlan
+ Wada Dessins associated with Finite Projective Spaces and Frobenius Compatibility 2010 Cristina Sarti
+ Wada Dessins associated with Finite Projective Spaces and Frobenius Compatibility 2010 Cristina Sarti
+ Riemann surfaces 2007 Kunihiko Kodaira
+ Riemann Surfaces 2016 Renzo Cavalieri
Eric Miles
+ Riemann surfaces 1992 Frances Kirwan
+ Riemann surfaces and dessin d'enfants 2018 Javier Alcaide Pérez
+ Riemann surfaces and dessins d'enfants 2014 D.P.A. van der Post