A KIRCHOFF–SOBOLEV PARAMETRIX FOR THE WAVE EQUATION AND APPLICATIONS

Type: Article

Publication Date: 2007-07-04

Citations: 61

DOI: https://doi.org/10.1142/s0219891607001203

Abstract

We construct a first order, physical space, parametrix for solutions to covariant, tensorial, wave equations on a general Lorentzian manifold. The construction is entirely geometric; that is both the parametrix and the error terms generated by it have a purely geometric interpretation. In particular, when the background Lorentzian metric satisfies the Einstein vacuum equations, the error terms, generated at some point p of the space-time, depend, roughly, only on the flux of curvature passing through the boundary of the past causal domain of p. The virtues of our specific geometric construction becomes apparent in applications to realistic problems. Though our main application is to General Relativity, which we discuss in [14], another simpler application shown here is to give a gauge invariant proof of the classical regularity result of Eardley–Moncrief [4, 5] for the Yang–Mills equations in ℝ 1+3 .

Locations

  • Journal of Hyperbolic Differential Equations - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ A Kirchoff-Sobolev parametrix for the wave equation and applications 2006 Sergiù Klainerman
Igor Rodnianski
+ PDF Chat Parametrix for wave equations on a rough background III : space-time regularity of the phase 2018 Jérémie Szeftel
+ Parametrix for wave equations on a rough background III: space-time regularity of the phase 2012 Jérémie Szeftel
+ Parametrix for wave equations on a rough background I: regularity of the phase at initial time 2012 Jérémie Szeftel
+ Parametrix for wave equations on a rough background II: construction and control at initial time 2012 Jérémie Szeftel
+ Parametrix for wave equations on a rough background II: construction and control at initial time 2012 Jérémie Szeftel
+ PDF Chat Parametrix for wave equations on a rough background IV: Control of the error term 2023 Jérémie Szeftel
+ PDF Chat A parametrix for quantum gravity? 2016 Giampiero Esposito
+ PDF Chat Around the bounded <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup></mml:math> curvature conjecture in general relativity 2010 Sergiù Klainerman
Igor Rodnianski
Jérémie Szeftel
+ Causal geometry of rough Einstein CMCSH spacetime 2014 Qian Janice Wang
+ BILINEAR ESTIMATES ON CURVED SPACE–TIMES 2005 Sergiù Klainerman
Igor Rodnianski
+ PDF Chat Global versions of the Gagliardo-Nirenberg-Sobolev inequality and applications to wave and Klein-Gordon equations 2020 Leonardo Abbrescia
Willie Wai-Yeung Wong
+ Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 3) 2014 Jérémie Szeftel
Fanny Bastien
+ Complex powers of the wave operator and the spectral action on Lorentzian scattering spaces 2023 Nguyen Viet Dang
Michał Wrochna
+ Jérémie Szeftel - The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4) 2014 Jérémie Szeftel
Fanny Bastien
+ Geometrical foundations of tensor calculus and relativity 2006 F. Schüller
V. Lorent
+ Regularity results for the Dirac-Klein-Gordon equations 2009 Achenef Tesfahun Temesgen
+ Jérémie Szeftel - The resolution of the bounded L2 curvature conjecture in General Relativity (Part 2) 2014 Jérémie Szeftel
Fanny Bastien
+ Jérémie Szeftel - The resolution of the bounded L2 curvature conjecture in General Relativity (Part 1) 2014 Jérémie Szeftel
Fanny Bastien
+ Complex powers of the wave operator and the spectral action on Lorentzian scattering spaces 2020 Nguyen Viet Dang
Michał Wrochna