On the geometry of numerical ranges

Type: Article

Publication Date: 1975-12-01

Citations: 41

DOI: https://doi.org/10.2140/pjm.1975.61.507

Abstract

A bounded convex set G in the plane is the numerical range of an operator on a separable Hubert space if G\G°i s a countable union of arcs of conic sections and singletons.This result answers, in particular, a question raised by Joel Anderson.

Locations

  • Pacific Journal of Mathematics - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Numerical Range and Convex Sets* 1974 Fredric M. Pollack
+ On the convexity of spatial numerical range in normed algebras 2024 H. V. Dedania
A. B. Patel
+ PDF Chat A numerical range characterization of uniformly smooth Banach spaces 2000 Ángel Rodrı́guez Palacios
+ SPATIAL NUMERICAL RANGES OF ELEMENTS OF C*-ALGEBRAS (Nonlinear Analysis and Convex Analysis) 1998 眞映 高橋
+ On a theorem by Kippenhahn 2017 Stephan Weis
+ On a theorem by Kippenhahn 2017 Stephan Weis
+ Numerical range and compact convex sets 2011 Mohammad Taghi Heydari
+ On The Geometric Properties Of The Numerical Ranges Of Bounded Linear Operators 2013 Masinde Abiud Wamalwa
+ PDF Chat Numerical range and operators on locally convex spaces 1976 Gérard Joseph
+ On range sets of bounded analytic functions 1987 Shōji Kobayashi
+ PDF Chat Krein space numerical ranges: compressions and dilations 2014 Natália Bebiano
João da Providência
+ Fundamental Numerical Radius Inequalities 2022 Pintu Bhunia
Sever S Dragomir
Mohammad Sal Moslehian
Kallol Paul
+ PDF Chat On Operator Ranges 1980 Bhushan L. Wadhwa
+ PDF Chat On operator ranges 1980 Bhushan L. Wadhwa
+ Operators with numerical range in a conic domain 2007 Bernhard Beckermann
Michel Crouzeix
+ On the numerical range in reflexive Banach spaces 1977 George Luna
+ On Certain (Nearly) Convex Joint Numerical Ranges 1993 Hari Bercovici
+ A theorem on numerical range 1975 R. Westwick
+ PDF Chat On the domains of indetermination of analytic functions 1960 J. Mioduszewski
+ On the Numerical Range and Norm of Elementary Operators 2004 Ameur Seddik