Anderson Localization for Time Periodic Random Schrödinger Operators

Type: Article

Publication Date: 2003-01-06

Citations: 11

DOI: https://doi.org/10.1081/pde-120019385

Abstract

Abstract We prove that at large disorder, Anderson localization in Z d is stable under localized time-periodic perturbations by proving that the associated quasi-energy operator has pure point spectrum. The formulation of this problem is motivated by questions of Anderson localization for non-linear Schrödinger equations.

Locations

  • Communications in Partial Differential Equations - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Anderson Localization for Time Periodic Random Schrödinger operators 2002 Avy Soffer
Weimin Wang
+ Anderson Localization for Time Quasi Periodic Random Schödinger and Wave Operators 2002 Jean Bourgain
Weimin Wang
+ Anderson Localization for Time Quasi-Periodic Random Schrödinger and Wave Equations 2004 Jean Bourgain
Weimin Wang
+ Localization for Some Continuous, Random Hamiltonians in d-Dimensions 1994 J. M. Combes
Peter D. Hislop
+ PDF Chat Localisation pour des opérateurs de Schrödinger aléatoires dans $L^2({\Bbb R}^d)$ : un modèle semi-classique 1995 Frédéric Klopp
+ PDF Chat Localization for Random Perturbations of Periodic Schrödinger Operators with Regular Floquet Eigenvalues 2002 Ivan Veselić
+ Anderson localized states for the quasi-periodic nonlinear wave equation on $\mathbb Z^d$ 2023 Yunfeng Shi
W. -M. Wang
+ PDF Chat Localization for random perturbations of periodic Schrödinger operators 1998 Werner Kirsch
Peter Stollmann
Günter Stolz
+ PDF Chat Non-stationary Anderson Localization 2024 Anton Gorodetski
Victor Kleptsyn
+ PDF Chat Anderson localization for the 1-d Schrödinger operator with white noise potential 2023 Laure Dumaz
Cyril Labbé
+ Anderson localization for the band model 2000 Jean Bourgain
Svetlana Jitomirskaya
+ Continuous Spectrum and Uniform Localization for Ergodic Schrödinger Operators 1997 Svetlana Jitomirskaya
+ Anderson localization for the $1$-d Schrödinger operator with white noise potential 2022 Laure Dumaz
Cyril Labbé
+ PDF Chat Anderson localized states for the quasi-periodic nonlinear Schr\"odinger equation on $\mathbb Z^d$ 2024 Yunfeng Shi
W. -M. Wang
+ Dynamical properties of random Schrödinger operators 1999 Jean-Marie Barbaroux
Werner Fischer
Peter Müller
+ Exponential Localization for Multi-Dimensional Schrödinger Operator with Random Point Potential 1997 Anne Boutet de Monvel
Vadim Grinshpun
+ PDF Chat Long-Time Anderson Localization for The Nonlinear Quasi-Periodic Schr\"Odinger Equation on $\Mathbb Z^D$ 2024 Hongzi Cong
Yunfeng Shi
WM Wang
+ Eigenvalue statistics for Schrödinger operators with random point interactions on $\mathbb{R}^d$, $d=1,2,3$ 2019 Peter D. Hislop
Werner Kirsch
M. Krishna
+ Anderson localization and Lifshits tails for random surface potentials 2005 Werner Kirsch
Simone Warzel
+ Anderson Localization for Quasi-Periodic Lattice Schrödinger Operators on $${\mathbb{Z}}^{d}$$ , d Arbitrary 2007 Jean Bourgain