Short Kloosterman Sums for Polynomials over Finite Fields

Type: Article

Publication Date: 2003-04-01

Citations: 2

DOI: https://doi.org/10.4153/cjm-2003-010-0

Abstract

Abstract We extend to the setting of polynomials over a finite field certain estimates for short Kloosterman sums originally due to Karatsuba. Our estimates are then used to establish some uniformity of distribution results in the ring [ x ]/ M ( x ) for collections of polynomials either of the form f −1 g −1 or of the form f −1 g −1 + afg , where f and g are polynomials coprime to M and of very small degree relative to M , and a is an arbitrary polynomial. We also give estimates for short Kloosterman sums where the summation runs over products of two irreducible polynomials of small degree. It is likely that this result can be used to give an improvement of the Brun-Titchmarsh theorem for polynomials over finite fields.

Locations

  • Canadian Journal of Mathematics - View - PDF
  • MOspace Institutional Repository (University of Missouri) - View - PDF

Similar Works

Action Title Year Authors
+ Short Interval Results For Powerfree Polynomials Over Finite Fields 2023 Angel Kumchev
Nathan McNew
Ariana Park
+ New estimates for short Kloosterman sums with weights 2021 Natalia Semenova
+ PDF Chat Short interval results for powerfree polynomials over finite fields 2023 Angel Kumchev
Nathan McNew
Ariana Park
+ New estimates of short Kloosterman sums 2010 A. A. Karatsuba
+ The size of wild Kloosterman sums in number fields and function fields 2022 Will Sawin
+ Kloosterman sums in residue rings 2013 Jean Bourgain
M. Z. Garaev
+ Distribution of short sums of classical Kloosterman sums of prime powers moduli 2019 Guillaume Ricotta
+ Incomplete Kloosterman sums and multiplicative inverses in short intervals 2012 T. D. Browning
Alan Haynes
+ Incomplete Kloosterman sums and multiplicative inverses in short intervals 2012 T. D. Browning
Alan Haynes
+ PDF Chat INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS 2012 T. D. Browning
Alan Haynes
+ Methods of Estimating Short Kloosterman Sums 2022 Maxim Aleksandrovich Korolev
+ PDF Chat Weyl sums in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi mathvariant="double-struck">F</mml:mi><mml:mi>q</mml:mi></mml:msub><mml:mo stretchy="false">[</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">]</mml:mo></mml:math> with digital restrictions 2008 Manfred G. Madritsch
Jörg Μ. Thuswaldner
+ Short Kloosterman sums with weights 2010 Maxim Aleksandrovich Korolev
+ Sum-product Estimates in Finite Fields via Kloosterman Sums 2007 Derrick Hart
Alex Iosevich
József Solymosi
+ PDF Chat The function field Sathe--Selberg formula in arithmetic progressions and `short intervals' 2019 Ardavan Afshar
Sam Porritt
+ Prime polynomial values of quadratic functions in short intervals 2019 Sushma Palimar
+ Prime polynomial values of quadratic functions in short intervals 2019 Sushma Palimar
+ On short Kloosterman sums modulo a prime 2016 Maxim Aleksandrovich Korolev
+ Prime polynomial values of linear functions in short intervals 2015 Efrat Bank
Lior Bary‐Soroker
+ Prime polynomial values of linear functions in short intervals 2014 Efrat Bank
Lior Bary‐Soroker