Square-free values of polynomials over the rational function field

Type: Article

Publication Date: 2013-10-15

Citations: 15

DOI: https://doi.org/10.1016/j.jnt.2013.08.014

Locations

  • Journal of Number Theory - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Squarefree values of polynomials over the rational function field 2012 Zeév Rudnick
+ Squarefree values of polynomials over the rational function field 2012 Zeév Rudnick
+ Square-free values over primes 2014 Guy Lando
+ PDF Chat SQUARE-FREE VALUES OF POLYNOMIALS EVALUATED AT PRIMES OVER A FUNCTION FIELD 2015 Guy Lando
+ Square-free values of polynomials evaluated at primes over a function field 2014 Guy Lando
+ Square-free values of polynomials evaluated at primes over a function field 2014 Guy Lando
+ On square-free values of large polynomials over the rational function field 2016 Dan Carmon
Alexei Entin
+ Square-free values of multivariate polynomials over function fields in linear sparse sets 2014 Shai Rosenberg
+ Square-free values of multivariate polynomials over function fields in linear sparse sets 2014 Shai Rosenberg
+ PDF Chat On square-free values of large polynomials over the rational function field 2019 Dan Carmon
Alexei Entin
+ Squarefree parts of polynomial values 2014 David Krumm
+ Squarefree parts of polynomial values 2014 David Krumm
+ Squarefree values of polynomial discriminants I 2016 Manjul Bhargava
Arul Shankar
Xiaoheng Wang
+ PDF Chat Squarefree values of polynomial discriminants I 2022 Manjul Bhargava
Arul Shankar
Xiaoheng Wang
+ PDF Chat Square-free values of multivariate polynomials over function fields in linear sparse sets 2016 Shai Rosenberg
+ PDF Chat Squarefree discriminants of polynomials with prime coefficients 2025 Valentio Iverson
Gian Cordana Sanjaya
Xiaoheng Wang
+ PDF Chat Squarefree parts of polynomial values 2016 David Krumm
+ PDF Chat Squarefree values of polynomials 1992 Michael Filaseta
+ Squarefree Values Of Polynomials 2023 N. A. Carella
+ PDF Chat Squarefree density of polynomials 2024 J. M. Kowalski
R. C. Vaughan