The Spectral Radius of Large Random Matrices

Type: Article

Publication Date: 1986-10-01

Citations: 72

DOI: https://doi.org/10.1214/aop/1176992372

Abstract

Let $\{m_{ij}\}, i = 1,2,\ldots, j = 1,2,\ldots,$ be iid random variables with $Em_{11} = 0$ and $Em^2_{11} = \sigma^2$. For each $n$ define $M_n = \{m_{ij}\}_{1 \leq i, j \leq n}$, the $n \times n$ matrix whose $(i, j)$ component is $m_{ij}$. We show that $\lim \sup_{n \rightarrow \infty}\rho_n \leq \sigma$ a.s., where $\rho_n$ is the spectral radius of $M_n/\sqrt n$. Evidence from computer experiments indicates that in fact $\rho_n \rightarrow \sigma$ a.s.

Locations

  • The Annals of Probability - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Spectral Radii of Large Non-Hermitian Random Matrices 2015 Tiefeng Jiang
Yongcheng Qi
+ A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries 1986 Chii-Ruey Hwang
+ PDF Chat Spectral radii of sparse non-Hermitian random matrices 2024 Hyungwon Han
+ PDF Chat Spectral radii of sparse random matrices 2019 Charles Bordenave
Florent Benaych-Georges
Antti Knowles
+ PDF Chat Spectral Analysis of Large Dimensional Random Matrices 2009 Zhidong Bai
Jack W. Silverstein
+ PDF Chat Spectral radius of random matrices with independent entries 2021 Johannes Alt
László Erdős
Torben Krüger
+ Spectral radius of random matrices with independent entries 2019 Johannes Alt
László Erdős
Torben Krüger
+ Random Matrices: The circular Law 2007 Terence Tao
Van Vu
+ PDF Chat On the Norm and Eigenvalue Distribution of Large Random Matrices 1999 Anne Boutet de Monvel
A. Khorunzhy
+ Spectra of Large Random Matrices: A Method of Study 1999 Eugene Kanzieper
V. Freilikher
+ PDF Chat Law of large numbers for the spectral radius of random matrix products 2021 Richard Aoun
Çağrı Sert
+ Law of large numbers for the spectral radius of random matrix products 2019 Richard Aoun
Çağrı Sert
+ PDF Chat Spectral Analysis of Random Sparse Matrices 2011 Tomonori Ando
Yoshiyuki Kabashima
Hisanao Takahashi
Osamu Watanabe
Masaki Yamamoto
+ Random matrices: Law of the determinant 2014 Hoi H. Nguyen
Van Vu
+ Law of large numbers for the spectral radius of random matrix products. 2019 Richard Aoun
Çağrı Sert
+ PDF Chat Spectral radius concentration for inhomogeneous random matrices with independent entries 2025 Yi Han
+ Spectral analysis of large block random matrices with rectangular blocks 2014 Xue Ding
+ Random matrix theory and high-dimensional statistics 2024 Weiming Li
Jianfeng Yao
Shurong Zheng
+ The largest eigenvalue of large random matrices and its application 2016 Han Xiao
+ Random matrices in the large N limit 2000 Dan Voiculescu