Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations

Type: Article

Publication Date: 2012-01-11

Citations: 9

DOI: https://doi.org/10.1051/m2an/2011059

Abstract

We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials. A suitable choice of the potential results in GMD schemes that preserve a discrete version of divergence. First- and second-order divergence preserving GMD schemes are tested on a series of benchmark numerical experiments. They demonstrate the computational efficiency and robustness of the GMD schemes.

Locations

  • ESAIM Mathematical Modelling and Numerical Analysis - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ Numerical methods for MHD problems 2004 Michal Dostál
+ Potential based, constraint preserving, genuinely multi-dimensional schemes for systems of conservation laws 2010 Siddhartha Mishra
Eitan Tadmor
+ Difference schemes on composite grids for hyperbolic equations 1994 П. П. Матус
+ Numerical methods for the MHD equations 2002
+ Multi-dimensional dispersion properties of kinetic energy conserving finite-difference schemes 1999 Thomas Lund
+ A fourth-order divergence-free method for MHD flows 2010 Shengtai Li
+ PDF Chat An adaptive, implicit, conservative, 1D-2V multi-species Vlasov–Fokker–Planck multi-scale solver in planar geometry 2018 William Taitano
Luis Chacón
Andrei N. Simakov
+ PDF Chat A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework 2007 François Bouchut
Christian Klingenberg
Knut Waagan
+ Divergence-Preserving Conservation Law Scheme for Magnetohydrodynamic Plasmas 2019 Richard J. Thompson
Trevor Moeller
+ HIGH-PRECISION DIFFERENCE SCHEMES FOR MULTIDIMENSIONAL WAVE EQUATION 2021 Thi‐Thao‐Phuong Hoang
+ Numerical Method for MHD Equations 2009 В. В. Колмычков
О. С. Мажорова
E E Fedoseev
+ Circumventing shock anomalies: a hybrid Riemann solver with high-order schemes 2018 Ioannis W. Kokkinakis
Dimitris Drikakis
+ High Order Finite Difference Schemes for MHD 2010 A. Mignone
Petros Tzeferacos
+ An investigation of genuinely multidimensional schemes for the Euler equations 1992 Donna J. Michalek
+ Supercritical-Order Mimetic Operators on Higher-Dimensional Staggered Grids 2017 Eduardo Sanchez
Guillermo Miranda
José María
José E. Castillo
+ Three-Level Schemes for the Advection Equation 2019 Petr N. Vabishchevich
+ PDF Chat Difference methods for multi-dimensional differential equations in mathematical physics 1965 Aleksander Andreevich Samarskij
+ Improvement of the genuinely multidimensional ME-AUSMPW scheme for subsonic flows 2021 Di Sun
Feng Qu
Qingsong Liu
Jiaxiang Zhong
+ PDF Chat An unconventional divergence free Finite Volume discretization of Lagrangian MHD 2023 Walter Boscheri
Raphaël Loubère
Pierre‐Henri Maire
+ Numerical methods for simulating MHD shock waves. 1987 W. G. Roberge
B. T. Draine