Locally parametric nonparametric density estimation

Type: Article

Publication Date: 1996-08-01

Citations: 316

DOI: https://doi.org/10.1214/aos/1032298288

Abstract

This paper develops a nonparametric density estimator with parametric overtones. Suppose $f(x, \theta)$ is some family of densities, indexed by a vector of parameters $\theta$. We define a local kernel-smoothed likelihood function which, for each x, can be used to estimate the best local parametric approximant to the true density. This leads to a new density estimator of the form $f(x, \hat{\theta}(x))$, thus inserting the best local parameter estimate for each new value of x. When the bandwidth used is large, this amounts to ordinary full likelihood parametric density estimation, while for moderate and small bandwidths the method is essentially nonparametric, using only local properties of data and the model. Alternative ways more general than via the local likelihood are also described. The methods can be seen as ways of nonparametrically smoothing the parameter within a parametric class. Properties of this new semiparametric estimator are investigated. Our preferred version has approximately the same variance as the ordinary kernel method but potentially a smaller bias. The new method is seen to perform better than the traditional kernel method in a broad nonparametric vicinity of the parametric model employed, while at the same time being capable of not losing much in precision to full likelihood methods when the model is correct. Other versions of the method are approximately equivalent to using particular higher order kernels in a semiparametric framework. The methodology we develop can be seen as the density estimation parallel to local likelihood and local weighted least squares theory in nonparametric regression.

Locations

  • The Annals of Statistics - View - PDF
  • Duo Research Archive (University of Oslo) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On Practical Efficiency of Locally Parametric Nonparametric Density Estimation Based on Local Likelihood Function 2003 Kee‐Hoon Kang
Jung-Hoon Han
+ PDF Chat Local likelihood density estimation 1996 Clive Loader
+ Local likelihood method: a bridge over parametric and nonparametric regression 2003 Shinto Eguchi
Tae Yoon Kim
Byeong U. Park
+ PDF Chat Semiparametric density estimation by local L2-fitting 2004 Kanta Naito
+ PDF Chat Local Maximum Likelihood Estimation and Inference 1998 Jianqing Fan
Mark W. Farmen
Irène Gijbels
+ Semi-parametric density estimation 1995 Chris Stride
+ PDF Chat Local likelihood density estimation based on smooth truncation 2006 Pedro Delicado
+ Likelihood-Based Local Linear Estimation of the Conditional Variance Function 2004 Keming Yu
M. C. Jones
+ PDF Chat Spline local basis methods for nonparametric density estimation 2023 Justin Kirkby
Álvaro Leitao
Duy Nguyen
+ LOCAL MODELING: DENSITY ESTIMATION AND NONPARAMETRIC REGRESSION 2015 Jianqing Fan
Runze Li
+ Nonparametric Density Estimation 2004 Wolfgang Karl Härdle
Axel Werwatz
Marlene Müller
Stefan Sperlich
+ Local and Variable Bandwidths and Local Linear Regression 1995 M. C. Jones
+ Local Likelihood Based on Kernel Censoring 1995 J. B. Copas
+ PDF Chat Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions 1995 Jianqing Fan
Nancy Heckman
M. P. Wand
+ Locally Kernel Weighted Maximum Likelihood Estimator for Local Linear Multi-Predictor Poisson Regression 2024 Darnah Andi Nohe
Memi Nor Hayati
Sri Wahyuningsih
Ibrahim Kamaruddin
Suyitno Suyitno
Andrea Tri Rian Dani
Rito Goejantoro
Desi Yuniarti
Fidia Deny Tisna Amijaya
Ika Purnamasari
+ A kernel-based parametric method for conditional density estimation 2010 Gang Fu
Frank Y. Shih
Haimin Wang
+ Modified Local Density Estimation for the Log-Linear Density 2000 Ro-Jin Pak
+ nprobust: Nonparametric Robust Estimation and Inference Methods using Local Polynomial Regression and Kernel Density Estimation 2016
+ Density estimation using non-parametric and semi-parametric mixtures 2012 Yong Wang
Chew-Seng Chee
+ lpdensity: Local Polynomial Density Estimation and Inference 2019 Matias D. Cattaneo
Michael Jansson
Xinwei Ma