Thermodynamics of the antiferromagnetic Heisenberg model on the checkerboard lattice

Type: Article

Publication Date: 2011-04-21

Citations: 23

DOI: https://doi.org/10.1103/physrevb.83.134431

Abstract

Employing numerical linked-cluster expansions (NLCEs) along with exact diagonalizations of finite clusters with periodic boundary condition, we study the energy, specific heat, entropy, and various susceptibilities of the antiferromagnetic Heisenberg model on the checkerboard lattice. NLCEs, combined with extrapolation techniques, allow us to access temperatures much lower than those accessible to exact diagonalization and other series expansions. We find that the high-temperature peak in specific heat decreases as the frustration increases, consistent with the large amount of unquenched entropy in the region around maximum classical frustration, where the nearest-neighbor and next-nearest neighbor exchange interactions (J and J', respectively) have the same strength, and with the formation of a second peak at lower temperatures. The staggered susceptibility shows a change of character when J' increases beyond 0.75J, implying the disappearance of the long-range antiferromagnetic order at zero temperature. For J'=4J, in the limit of weakly coupled crossed chains, we find large susceptibilities for stripe and Neel order with Q=(pi/2,pi/2) at low temperatures with antiferromagnetic correlations along the chains. Other magnetic and bond orderings, such as a plaquette valence-bond solid and a crossed-dimer order suggested by previous studies, have also been investigated.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Frustrated Heisenberg antiferromagnet on the checkerboard lattice:<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>model 2012 R. F. Bishop
P. H. Y. Li
D. J. J. Farnell
Johannes Richter
C. E. Campbell
+ NĂ©el and Valence-Bond Crystal phases of the Two-Dimensional Heisenberg Model on the Checkerboard Lattice 2007 S. Moukouri
+ Frustrated Heisenberg antiferromagnet on the honeycomb lattice with spin quantum number<i>s</i>≄ 1 2016 P. H. Y. Li
R. F. Bishop
C. E. Campbell
+ PDF Chat Numerical linked-cluster expansions for two-dimensional spin models with continuous disorder distributions 2024 Mahmoud Abdelshafy
Marcos Rigol
+ PDF Chat Three-dimensional Hubbard model in the thermodynamic limit 2016 Ehsan Khatami
+ PDF Chat Numerical linked-cluster expansions for two-dimensional spin models with continuous disorder distributions 2024 Mahmoud Abdelshafy
Marcos Rigol
+ PDF Chat Mott Insulating States with Competing Orders in the Triangular Lattice Hubbard Model 2021 Alexander Wietek
Riccardo Rossi
Fedor Ć imkovic
Marcel Klett
P. Hansmann
Michel Ferrero
E. Miles Stoudenmire
Thomas SchÀfer
Antoine Georges
+ PDF Chat Numerical linked-cluster expansions for disordered lattice models 2019 Michael Mulanix
Demetrius Almada
Ehsan Khatami
+ PDF Chat Numerical linked-cluster algorithms. II.<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>t</mml:mi><mml:mtext>−</mml:mtext><mml:mi>J</mml:mi></mml:mrow></mml:math>models on the square lattice 2007 Marcos Rigol
Tyler Bryant
Rajiv R. P. Singh
+ PDF Chat Precise many-body simulations of antiferromagnetic phases using broken-symmetry perturbative expansions 2022 R. Garioud
F. Ć imkovic
R. Rossi
G. Spada
T. SchÀfer
F. Werner
Michel Ferrero
+ PDF Chat Lanczos-boosted numerical linked-cluster expansion for quantum lattice models 2019 Krishnakumar Bhattaram
Ehsan Khatami
+ PDF Chat Thermodynamics of the disordered Hubbard model studied via numerical linked-cluster expansions 2021 Jacob Park
Ehsan Khatami
+ PDF Chat FRUSTRATED QUANTUM ANTIFERROMAGNETS: APPLICATION OF HIGH-ORDER COUPLED CLUSTER METHOD 2007 Johannes Richter
R. Darradi
Ronald Zinke
R. F. Bishop
+ PDF Chat Specific heat of quasi-two-dimensional antiferromagnetic Heisenberg models with varying interplanar couplings 2003 Pinaki Sengupta
Anders W. Sandvik
Rajiv R. P. Singh
+ PDF Chat Finite-temperature superconducting correlations of the Hubbard model 2015 Ehsan Khatami
Richard Scalettar
Rajiv R. P. Singh
+ PDF Chat Strong-coupling expansions at finite temperatures: Application to quantum disordered and quantum critical phases 1998 N. Elstner
Rajiv R. P. Singh
+ PDF Chat Disorder effects on superconducting tendencies in the checkerboard Hubbard model 2013 Peter M. Smith
Malcolm P. Kennett
+ PDF Chat Phase diagram of a frustrated quantum antiferromagnet on the honeycomb lattice: Magnetic order versus valence-bond crystal formation 2011 A. Fabricio Albuquerque
David Schwandt
Balåzs Hetényi
Sylvain Capponi
Matthieu Mambrini
Andreas M. LĂ€uchli
+ Cluster Heat Bath Monte Carlo study of a quasi one-dimensional Ising antiferromagnet on a stacked triangular lattice 2007 E. Meloche
M. L. Plumer
+ PDF Chat Phase diagram of a frustrated Heisenberg antiferromagnet on the honeycomb lattice: The<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>3</mml:mn></mml:
 2012 P. H. Y. Li
R. F. Bishop
D. J. J. Farnell
C. E. Campbell

Works That Cite This (18)

Action Title Year Authors
+ PDF Chat Thermodynamics and phase transitions for the Heisenberg model on the pinwheel distorted kagome lattice 2011 Ehsan Khatami
Rajiv R. P. Singh
Marcos Rigol
+ PDF Chat Numerical linked-cluster expansions for disordered lattice models 2019 Michael Mulanix
Demetrius Almada
Ehsan Khatami
+ PDF Chat Numerical linked cluster expansions for inhomogeneous systems 2020 Johann Gan
Kaden R. A. Hazzard
+ PDF Chat Combining dynamical quantum typicality and numerical linked cluster expansions 2019 Jonas Richter
Robin Steinigeweg
+ PDF Chat A short introduction to numerical linked-cluster expansions 2012 Baoming Tang
Ehsan Khatami
Marcos Rigol
+ PDF Chat Thermodynamics of two-dimensional spin models with bimodal random-bond disorder 2015 Baoming Tang
Deepak Iyer
Marcos Rigol
+ PDF Chat Possible Inversion Symmetry Breaking in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn></mml:math> Pyrochlore Heisenberg Magnet 2021 Imre HagymĂĄsi
Robin SchÀfer
Roderich Moessner
David J. Luitz
+ PDF Chat Lanczos-boosted numerical linked-cluster expansion for quantum lattice models 2019 Krishnakumar Bhattaram
Ehsan Khatami
+ PDF Chat Thermodynamics of the pyrochlore-lattice quantum Heisenberg antiferromagnet 2019 Patrick MĂŒller
Andre Lohmann
Johannes Richter
Oleg Derzhko
+ PDF Chat Pyrochlore <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:math> Heisenberg antiferromagnet at finite temperature 2020 Robin SchÀfer
Imre HagymĂĄsi
Roderich Moessner
David J. Luitz

Works Cited by This (22)

Action Title Year Authors
+ PDF Chat Absence of a sliding Luttinger liquid phase in the planar pyrochlore 2007 Marcelo Arlego
Wolfram Brenig
+ PDF Chat Valence-bond crystal phase of the crossed-chain quantum spin model 2004 Wolfram Brenig
Matthias Grzeschik
+ PDF Chat From the square lattice to the checkerboard lattice: Spin-wave and large-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>n</mml:mi></mml:math>limit analysis 2002 B. Canals
+ PDF Chat Numerical Linked-Cluster Approach to Quantum Lattice Models 2006 Marcos Rigol
Tyler Bryant
Rajiv R. P. Singh
+ PDF Chat Numerical linked-cluster algorithms. I. Spin systems on square, triangular, and kagomé lattices 2007 Marcos Rigol
Tyler Bryant
Rajiv R. P. Singh
+ PDF Chat One-dimensional behavior and sliding Luttinger liquid phase in a frustrated spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:math>crossed chain model: Contribution of exact diagonalizations 2002 Philippe Sindzingre
J.-B. Fouet
C. Lhuillier
+ PDF Chat Singlet Excitations in Pyrochlore: A Study of Quantum Frustration 2003 Erez Berg
Ehud Altman
Assa Auerbach
+ PDF Chat Kagome lattice antiferromagnets and Dzyaloshinsky-Moriya interactions 2007 Marcos Rigol
Rajiv R. P. Singh
+ PDF Chat Generalized directed loop method for quantum Monte Carlo simulations 2005 Fabien Alet
Stefan Weßel
Matthias Troyer
+ PDF Chat Magnetic Susceptibility of the Kagome Antiferromagnet<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>ZnCu</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>OH</mml:mi><mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mn>6</mml:mn></mml:msub><mml:msub><mml:mi>Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2007 Marcos Rigol
Rajiv R. P. Singh