Type: Article
Publication Date: 1971-01-01
Citations: 3
DOI: https://doi.org/10.1090/s0002-9947-1971-0289787-5
We exhibit examples of (1) series that converge more rapidly than any geometric series where the function represented has a natural boundary, (2) the convergence of a series with maximum geometric degree of convergence yet having limit points of poles of the series everywhere dense on a circumference in the complement of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, (3) a Padé table for an entire function whose diagonal has poles every-where dense in the plane and (4) a corresponding example for the table of rational functions of best approximation of prescribed type.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | The Degree of Rational Approximation to Meromorphic Functions | 1988 |
Michael Freund |
+ | Remark on a theorem of Aharonov and Walsh | 1974 |
P. Szüsz |
+ PDF Chat | The role of the pole in rational approximation | 1974 |
J. L. Walsh |