Type: Article
Publication Date: 2012-02-29
Citations: 70
DOI: https://doi.org/10.1002/rsa.20409
Abstract We consider the set of all graphs on n labeled vertices with prescribed degrees D = ( d 1 ,…, d n ). For a wide class of tame degree sequences D we obtain a computationally efficient asymptotic formula approximating the number of graphs within a relative error which approaches 0 as n grows. As a corollary, we prove that the structure of a random graph with a given tame degree sequence D is well described by a certain maximum entropy matrix computed from D . We also establish an asymptotic formula for the number of bipartite graphs with prescribed degrees of vertices, or, equivalently, for the number of 0‐1 matrices with prescribed row and column sums. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013