Type: Article
Publication Date: 1993-01-01
Citations: 13
DOI: https://doi.org/10.1090/s0002-9947-1993-1102890-7
On a compact surface with smooth boundary, the determinant of the Laplacian associated to a smooth metric on the surface (with Dirichlet boundary conditions if the boundary is nonempty) is a well-defined isospectral invariant. As a function on the moduli space of such surfaces, it is a smooth function whose boundary behavior in certain cases is well understood; see [OPS and K]. In this paper, we restrict ourselves to a certain class of singular metrics on closed surfaces called conical metrics. We show that the determinant of the associated Laplacian is still well defined and that it is a real analytic function on a suitably restricted subset of the space of conical metrics on the sphere.