n-Widths in Approximation Theory.

Type: Article

Publication Date: 1986-10-01

Citations: 774

DOI: https://doi.org/10.2307/2008195

Abstract

I. Introduction.- II. Basic Properties of n-Widths.- 1. Properties of dn.- 2. Existence of Optimal Subspaces for dn.- 3. Properties of dn.- 4. Properties of ?n.- 5. Inequalities Between n-Widths.- 6. Duality Between dn and dn.- 7. n-Widths of Mappings of the Unit Ball.- 8. Some Relationships Between dn(T), dn(T) and ?n(T).- Notes and References.- III. Tchebycheff Systems and Total Positivity.- 1. Tchebycheff Systems.- 2. Matrices.- 3. Kernels.- 4. More on Kernels.- IV. n-Widths in Hilbert Spaces.- 1. Introduction.- 2. n-Widths of Compact Linear Operators.- 3. n-Widths, with Constraints.- 3.1 Restricted Approximating Subspaces.- 3.2 Restricting the Unit Ball and Optimal Recovery.- 3.3 n-Widths Under a Pair of Constraints.- 3.4 A Theorem of Ismagilov.- 4. n-Widths of Compact Periodic Convolution Operators.- 4.1 n-Widths as Fourier Coefficients.- 4.2 A Return to Ismagilov's Theorem.- 4.3 Bounded mth Modulus of Continuity.- 5. n-Widths of Totally Positive Operators in L2.- 5.1 The Main Theorem.- 5.2 Restricted Approximating Subspaces.- 6. Certain Classes of Periodic Functions.- 6.1 n-Widths of Cyclic Variation Diminishing Operators.- 6.2 n-Widths for Kernels Satisfying Property B.- Notes and References.- V. Exact n-Widths of Integral Operators.- 1. Introduction.- 2. Exact n-Widths of K? in Lq and Kp in L1.- 3. Exact n-Widths of K?r in Lq and Kpr in L1.- 4. Exact n-Widths for Periodic Functions.- 5. n-Widths of Rank n + 1 Kernels.- Notes and References.- VI. Matrices and n-Widths.- 1. Introduction and General Remarks.- 2. n-Widths of Diagonal Matrices.- 2.1 The Exact Solution for q ? p and p = 1, q = 2.- 2.2 Various Estimates for p = 1, q = ?.- 3. n-Widths of Strictly Totally Positive Matrices.- Notes and References.- VII. Asymptotic Estimates for n-Widths of Sobolev Spaces.- 1. Introduction.- 2. Optimal Lower Bounds.- 3. Optimal Upper Bounds.- 4. Another Look at ?n(B1(r) L?).- Notes and References.- VIII. n-Widths of Analytic Functions.- 1. Introduction.- 2. n-Widths of Analytic Functions with Bounded mth Derivative.- 3. n-Widths of Analytic Functions in H2.- 4. n-Widths of Analytic Functions in H?.- 5. n-Widths of a Class of Entire Functions.- Notes and References.- Glossary of Selected Symbols.- Author Index.

Locations

  • Mathematics of Computation - View
  • Library Union Catalog of Bavaria, Berlin and Brandenburg (B3Kat Repository) - View - PDF

Similar Works

Action Title Year Authors
+ An upper bound on the Kolmogorov widths of a certain family of integral operators 2018 Duaine Lewis
Bernd Sing
+ n-Widths in Hilbert Spaces 1985 Allan Pinkus
+ PDF Chat On relative widths of classes of multivariable functions that are defined as a convolution 1998 Leis Azar
+ Approximation of Functions and Fourier Multipliers and their applications 2016
+ The Approximation Characteristics of Weighted Band-Limited Function Space 2024 Yue Li
Guanggui Chen
Yanyan Xu
Xiangyu Pan
+ Problems of approximation theory in abstract linear spaces 2021 A. S. Serdyuk
Andrii Shidlich
+ Best $n$-term approximation of diagonal operators and application to function spaces with mixed smoothness 2021 Van Kien Nguyen
VanDung Nguyen
+ n-Widths of function spaces 1976 Donald J. Newman
+ Modulation spaces and nonlinear approximation 1998 Salti Samarah
+ The N-Widths of Spaces of Holomorphic Functions on Bounded Symmetric Domains of Tube Type 2000 Hongming Ding
Kenneth I. Gross
Donald St. P. Richards
+ The Exact Estimation on n-Widths of Certain Periodic Convolution Classes 2007 WU Garidi
+ Asymptotic Estimates of the n-Widths in Hilbert Space 1972 Joseph W. Jerome
+ PDF Chat Band-Limited Functions: L p -Convergence 1989 Juan Antonio Barceló
Antonio Corboda
+ μ-average N-widths on the Wiener space 1994 Chengyong Wang
+ On $n$-widths of classes of holomorphic functions with reproducing kernels 1994 Stephen D. Fisher
Michael Stessin
+ Modified Fourier expansions: theory, construction and applications 2010 Ben Adcock
+ PDF Chat Approximative Properties of Diagonal Operators in Orlicz Spaces 2015 Andrii Shidlich
S. O. Chaichenko
+ Approximation Methods for Convolution Operators on the Real Line 2005 rer. nat. Pedro Santos
+ Infinite-dimensional widths in the spaces of functions, II 1992 Chun Li
+ PDF Chat Kolmogorov widths under holomorphic mappings 2015 Albert Cohen
Ronald DeVore

Works That Cite This (523)

Action Title Year Authors
+ Optimal linear randomized methods for linear operators in Hilbert spaces 1992 Erich Novak
+ Gelfand and Kolmogorov numbers of Sobolev embeddings of weighted function spaces 2011 Shun Zhang
Fang Gensun
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>s</mml:mi></mml:math>-numbers of compact embeddings of function spaces on quasi-bounded domains 2013 Shun Zhang
Alicja Dota
+ Widths of function classes on sets with tree-like structure 2014 А. А. Васильева
+ Some s-numbers of an integral operator of Hardy type on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo>⋅</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup></mml:math> spaces 2009 D. E. Edmunds
Ján Lang
Aleš Nekvinda
+ Complexity of linear ill-posed problems in Hilbert space 2016 Peter Mathé
Sergei V. Pereverzev
+ Some<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>s</mml:mi></mml:math>-numbers of embeddings in function spaces with polynomial weights 2013 Shun Zhang
Fang Gensun
F HUANG
+ PDF Chat Registration-Based Model Reduction in Complex Two-Dimensional Geometries 2021 Tommaso Taddei
Lei Zhang
+ PDF Chat Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, $$f \cdot P$$- and f/P-Greedy 2022 Tizian Wenzel
Gabriele Santin
Bernard Haasdonk
+ PDF Chat Behavior of Polynomials of Best Uniform Approximation 1989 E. B. Saff
V. Totik