Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes

Type: Article

Publication Date: 2012-01-01

Citations: 18

DOI: https://doi.org/10.3934/cpaa.2012.11.1097

Abstract

Motivated by the work of Grujić and Kalisch, [Z. Grujić and H.Kalisch, Local well-posedness of the generalized Korteweg-deVries equation in spaces of analytic functions, Differential andIntegral Equations 15 (2002) 1325--1334], we prove the localwell-posedness for the periodic KdV equation in spaces of periodicfunctions analytic on a strip around the real axis without shrinkingthe width of the strip in time.

Locations

  • Communications on Pure &amp Applied Analysis - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions 2002 Zoran Grujić
Henrik Kalisch
+ PDF Chat Global well-posedness for periodic generalized Korteweg-de Vries equation 2017 Yi Wu
+ Analytic well-posedness of periodic gKdV 2012 A. Alexandrou Himonas
Gerson Petronilho
+ PDF Chat Local Well-Posedness of the KdV Equation with Quasi-Periodic Initial Data 2012 Kotaro Tsugawa
+ PDF Chat On Local Well-posedness of the Periodic Korteweg-de Vries Equation Below $H^{-\frac{1}{2}}(\mathbb{T})$ 2024 Ryan McConnell
Seungly Oh
+ Local well-posedness of the KdV equation with quasi periodic initial data 2011 Kotaro Tsugawa
+ PDF Chat Local well-posedness for the periodic higher order KdV type equations 2011 Hiroyuki Hirayama
+ Periodic Stochastic Korteweg-de Vries Equation 2009 Tadahiro Oh
+ Periodic Stochastic Korteweg-de Vries Equation 2009 Tadahiro Oh
+ PDF Chat Local well-posedness for the Zakharov-Kuznetsov equation on the background of a bounded function 2024 José M. Palacios
+ Local well-posedness for the Zakharov-Kuznetsov equation on the background of a bounded function 2022 José Manuel Palacios
+ On the Periodic Kdv Equation in 2008 Thomas Kappeler
Jürgen Pöschel
+ Local well-posedness and local (in space) regularity results for the complex Korteweg–de Vries equation 2007 Jiahong Wu
Juan-Ming Yuan
+ Local well-posedness for the dispersion generalized periodic KdV equation 2011 Junfeng Li
Shaoguang Shi
+ Multilinear estimates for periodic KdV equations and applications 2001 Jim Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Global well-posedness for periodic generalized KdV equation 2013 Jiguang Bao
Yifei Wu
+ Local well-posedness for the gKdV equation on the background of a bounded function 2022 José M. Palacios
+ PDF Chat Periodic stochastic Korteweg–de Vries equation with additive space-time white noise 2009 Tadahiro Oh
+ Local well-posedness for the gKdV equation on the background of a bounded function 2021 José Manuel Palacios
+ Global well-posedness for the transitional Korteweg-de Vries equation 1998 Wagner Nunes Rodrigues

Works Cited by This (22)

Action Title Year Authors
+ Solutions of the (generalized) Korteweg-de Vries equation in the Bergman and the Szegö spaces on a sector 1991 Nakao Hayashi
+ Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋 2003 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices 1993 Carlos E. Kenig
Gustavo Ponce
Luis Vega
+ Analyticity of Solutions of the Korteweg–De Vries Equation 1991 Nakao Hayashi
+ Gevrey regularity for nonlinear analytic parabolic equations 1998 Andrew B. Ferrari
Edriss S. Titi
+ PDF Chat On the radius of analyticity of solutions to the three-dimensional Euler equations 2008 Igor Kukavica
Vlad Vicol
+ Existence and generalized Gevrey regularity of solutions to the Kuramoto–Sivashinsky equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> 2007 Animikh Biswas
David Swanson
+ PDF Chat Rapid convergence of a Galerkin projection of the KdV equation 2005 Henrik Kalisch
+ PDF Chat On the rate of convergence of a collocation projection of the KdV equation 2007 Henrik Kalisch
Xavier Raynaud
+ Local existence and Gevrey regularity of 3-D Navier–Stokes equations with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mo>ℓ</mml:mo></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math> initial data 2005 Animikh Biswas