Kaehler structures on ๐พ_{๐‚}/(๐,๐)

Type: Article

Publication Date: 1997-01-01

Citations: 11

DOI: https://doi.org/10.1090/s0002-9947-97-01840-0

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a compact connected semi-simple Lie group, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G equals upper K Subscript bold upper C"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">C</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">G = K_{\mathbf C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G equals upper K upper A upper N"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:mi>K</mml:mi> <mml:mi>A</mml:mi> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">G = KAN</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an Iwasawa decomposition. To a given <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant Kaehler structure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ฯ‰</mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G slash upper N"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">G/N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there corresponds a pre-quantum line bundle <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper L"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">L</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf L}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G slash upper N"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">G/N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Following a suggestion of A.S. Schwarz, in a joint paper with V. Guillemin, we studied its holomorphic sections <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O left-parenthesis bold upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">L</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathcal O}({\mathbf L})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-representation space. We defined a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-structure on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O left-parenthesis bold upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">L</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathcal O}({\mathbf L})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript omega Baseline subset-of script upper O left-parenthesis bold upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>ฯ‰</mml:mi> </mml:msub> <mml:mo>โŠ‚</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">L</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_\omega \subset {\mathcal O}({\mathbf L})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the space of square-integrable holomorphic sections. Then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript omega"> <mml:semantics> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>ฯ‰</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">H_\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a unitary <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-representation space, but not all unitary irreducible <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-representations occur as subrepresentations of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript omega"> <mml:semantics> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>ฯ‰</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">H_\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This paper serves as a continuation of that work, by generalizing the space considered. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a Borel subgroup containing <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with commutator subgroup <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper B comma upper B right-parenthesis equals upper N"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">(B,B)=N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Instead of working with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G slash upper N equals upper G slash left-parenthesis upper B comma upper B right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">G/N = G/(B,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we consider <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G slash left-parenthesis upper P comma upper P right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>P</mml:mi> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">G/(P,P)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for all parabolic subgroups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> containing <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We carry out a similar construction, and recover in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript omega"> <mml:semantics> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>ฯ‰</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">H_\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the unitary irreducible <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-representations previously missing. As a result, we use these holomorphic sections to construct a model for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: a unitary <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-representation in which every irreducible <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-representation occurs with multiplicity one.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat ๐พ-invariant Kaehler structures on ๐พ_{๐‚}/๐ and the associated line bundles 1996 Meng-Kiat Chuah
+ PDF Chat Group actions on ๐ด_{๐‘˜}-manifolds 1978 Hsรผ Tung Ku
Mei Chin Ku
+ PDF Chat A note on the existence of ๐บ-maps between spheres 1987 Stefan Waner
+ PDF Chat On ๐ถ*-algebras associated with locally compact groups 1996 M. Bachir Bekka
Eberhard Kaniuth
Anthony Lau
G. Schlichting
+ Generating sets for compact semisimple Lie groups 1999 Michael Field
+ Algebraic ๐พ-theory of ๐‘‡๐ป๐ป(๐”ฝ_{๐•ก}) 2022 Haldun ร–zgรผr Bayฤฑndฤฑr
Tasos Moulinos
+ Continuous-trace groupoid crossed products 2003 Igor Fulman
Paul S. Muhly
Dana P. Williams
+ PDF Chat Transitive actions on highly connected spaces 1973 Victor Schneider
+ PDF Chat On the structure of ๐‘‰๐‘(๐บ) for almost connected groups 1985 B. Mashhood
+ On the Lie algebra structure of ๐ป๐ปยน(๐ด) of a finite-dimensional algebra ๐ด 2019 Markus Linckelmann
Lleonard Rubio y Degrassi
+ PDF Chat On the ๐พ-groups of certain ๐ถ*-algebras used in ๐ธ-theory 1994 Gabriel Nagy
+ PDF Chat On Gelโ€ฒfand pairs associated with solvable Lie groups 1990 Chal Benson
Joe Jenkins
Gail Ratcliff
+ PDF Chat On โ„Ž๐‘œ๐‘šdim๐‘€๐‘ˆ_{*}(๐‘‹ร—๐‘Œ) 1976 Duane Oโ€™Neill
+ PDF Chat The equivariant Hurewicz map 1992 L Lewis
+ PDF Chat On the structure of certain locally compact topological groups 1991 Ta Sun Wu
+ PDF Chat Compact operators and the geometric structure of ๐ถ*-algebras 1996 M. Anoussis
Elias G. Katsoulis
+ Adams operations on classical compact Lie groups 2016 Chi-Kwong Fok
+ PDF Chat Non-Archimedean $C\sp {\#}(X)$ 1986 Jesรบs M. Domฤฑฬnguez
+ The flat model structure on ๐‚๐ก(๐‘) 2004 James Gillespie
+ Regular Functions on the ๐พ-nilpotent cone 2022 Lucas Mason-Brown