Hankel Forms and the Fock Space

Type: Article

Publication Date: 1987-04-30

Citations: 227

DOI: https://doi.org/10.4171/rmi/46

Abstract

We consider Hankel forms on the Hilbert space of analytic functions square integrable with respect to a given measure on a domain in \mathbb C^n . Under rather restrictive hypotheses, essentially implying «homogeneity» of the set-up, we obtain necessary and sufficient conditionsfor boundedness, compactness and belonging to Schatten classes S_p, \; p ≥ 1 , for Hankel forms (analogues of the theorems of Nehari, Hartman and Peller). There are several conceivable notions of «symbol»; choosing the appropriate one, these conditions are expressed in terms of the symbol of the form belonging to certain weighted L^p -spaces.Our theory applies in particular to the Fock spaces (defined by a Gaussian measure in \mathbb C^n ). For the corresponding L^p -spaces we obtain also a lot of other results: interpolation (pointwise, abstract), approximation, decomposition etc. We also briefly treat Bergman spaces.A specific feature of our theory is that it is «gauge invariant». (A gauge transformation is the simultaneous replacement of functions f by f\phi and d\mu by |\phi|^{–2} d\mu , where \phi is a given (non-vanishing) function). For instance, in the Fock case, an interesting alternative interpretation of the results is obtained if we pass to the measure exp (- y^2)dx \; dy . In this context we introduce some new function spaces E_p , which are Fourier, and even Mehler invariant.

Locations

  • Revista Matemática Iberoamericana - View - PDF

Similar Works

Action Title Year Authors
+ HANKEL OPERATORS ON FOCK SPACES 2010 Kristian Seip
El Hassan Youssfi
+ PDF Chat Hankel Operators on Fock Spaces and Related Bergman Kernel Estimates 2011 Kristian Seip
El Hassan Youssfi
+ Hankel operators on Fock spaces and related Bergman kernel estimates 2010 Kristian Seip
El Hassan Youssfi
+ Hankel operators on Fock spaces and related Bergman kernel estimates 2010 Kristian Seip
El Hassan Youssfi
+ Hankel bilinear forms on generalized Fock–Sobolev spaces on C^n 2020 Carme Cascante
Joan Fàbrega
Daniel Pascuas
+ PDF Chat Hankel Operators on Fock Spaces 2013 Antti Perälä
Alexander Schuster
Jani A. Virtanen
+ Hankel operators on the Fock-Sobolev spaces 2018 Anuradha Gupta
Bhawna Gupta
+ Hankel Operators 2012 Kehe Zhu
+ Bounded, compact and Schatten class Hankel operators on Fock-type spaces 2023 Zhicheng Zeng
Xiaofeng Wang
Zhangjian Hu
+ Hankel operators on Fock spaces <i>F<sup>p</sup></i>(<i>ϕ</i>) 2018 Xiaofen Lv
+ PDF Chat Hankel Operators on Standard Bergman Spaces 2011 Jordi Pau
+ Hankel Bilinear forms on generalized Fock-Sobolev spaces on ${\mathbb C}^n$ 2019 Carme Cascante
Joan Fàbrega
Daniel Pascuas
+ Small Hankel operators on generalized Fock spaces 2017 Carme Cascante
Joan Fàbrega
Daniel Pascuas
José Ángel Peláez
+ Small Hankel operators on generalized Fock spaces 2017 Carme Cascante
Joan Fàbrega
Daniel Pascuas
José Ángel Peláez
+ Hankel operators on generalized Bergman-Hardy spaces 1997 Wolfgang Lusky
Bettina Rehberg
+ Compact Hankel Operators with Bounded Symbols 2019 Raffael Hagger
Jani A. Virtanen
+ PDF Chat A Hankel matrix acting on Fock spaces 2023 Zhengyuan Zhuo
Conghui Shen
Dongxing Li
Songxiao Li
+ HANKEL MEASURES FOR FOCK SPACE 2022 ERMIN WANG
+ Small Hankel operators on vector valued generalzed Fock spaces 2020 Hélène Bommier-Hato
+ Hausdorff operators on Fock Spaces 2020 Πέτρος Γαλανόπουλος
Georgios Stylogiannis

Works Cited by This (0)

Action Title Year Authors