Percolation Model for Nodal Domains of Chaotic Wave Functions

Type: Article

Publication Date: 2002-03-01

Citations: 138

DOI: https://doi.org/10.1103/physrevlett.88.114102

Abstract

Nodal domains are regions where a function has definite sign. In [[1]] it is conjectured that the distribution of nodal domains for quantum eigenfunctions of chaotic systems is universal. We propose a percolationlike model for description of these nodal domains which permits us to calculate all interesting quantities analytically, agrees well with numerical simulations, and due to the relation to percolation theory opens the way to deeper understanding of the structure of chaotic wave functions.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Nodal Domains Statistics: A Criterion for Quantum Chaos 2002 Galya Blum
Sven Gnutzmann∄
Uzy Smilansky
+ PDF Chat Nodal domain statistics for quantum chaotic maps 2008 Jonathan P. Keating
Jens Marklof
I. G. Williams
+ Asymptotic Statistics of Nodal Domains of Quantum Chaotic Billiards in the Semiclassical Limit 2012 Kyle T Konrad
+ Anatomy of quantum chaotic eigenstates 2010 Stéphane Nonnenmacher
+ PDF Chat Nodal domain distribution for a nonintegrable two-dimensional anharmonic oscillator 2005 Hirokazu Aiba
T. Suzuki
+ PDF Chat Mode Fluctuations as Fingerprints of Chaotic and Non-Chaotic Systems 1997 R. Aurich
Arnd BĂ€cker
Frank Steiner
+ PDF Chat On the distribution of zeros of chaotic wavefunctions 1997 Pragya Shukla
+ PDF Chat Structure of quantum chaotic wave functions: ergodicity, localization, and transport 2001 L. Kaplan
+ Investigation of nodal domains in a chaotic three-dimensional microwave rough billiard with the translational symmetry 2007 Nazar Savytskyy
Oleg Tymoshchuk
Oleh Hul
Szymon Bauch
Leszek Sirko
+ PDF Chat SLE description of the nodal lines of random wavefunctions 2006 E. Bogomolny
R. Dubertrand
C. Schmit
+ PDF Chat Nodal Domain Statistics for Quantum Maps, Percolation, and Stochastic Loewner Evolution 2006 Jonathan P. Keating
Jens Marklof
I. G. Williams
+ Experimental investigation of nodal domains in the chaotic microwave rough billiard 2004 Nazar Savytskyy
Oleh Hul
Leszek Sirko
+ PDF Chat Planck-scale distribution of nodal length of arithmetic random waves 2020 Jacques Benatar
Domenico Marinucci
Igor Wigman
+ PDF Chat Nodal domain distributions for quantum maps 2003 Jonathan P. Keating
Francesco Mezzadri
Alejandro Monastra
+ Quantum chaos in rectangular billiard 2008 Edgar GonzĂĄlez
J RoldĂĄn
+ Non-Universality of Nodal Length Distribution for Arithmetic Random Waves 2015 Domenico Marinucci
Giovanni Peccati
Maurizia Rossi
Igor Wigman
+ PDF Chat Nodal portraits of quantum billiards: Domains, lines, and statistics 2017 Sudhir R. Jain
Rhine Samajdar
+ PDF Chat Signatures of quantum chaos in the nodal points and streamlines in electron transport through billiards 1999 K.-F. Berggren
K. N. Pichugin
Almas F. Sadreev
A.A. Starikov
+ PDF Chat Statistical distribution of components of energy eigenfunctions: from nearly-integrable to chaotic 2016 Jiaozi Wang
Wen-ge Wang
+ Zigzag theory of localization in quantum chaos 2000 Daniel Miller