Instantons and the spectral function of electrons in the half-filled Landau level

Type: Article

Publication Date: 1994-09-15

Citations: 40

DOI: https://doi.org/10.1103/physrevb.50.8078

Abstract

We calculate the instanton--anti-instanton action ${\mathit{S}}_{\mathit{MM}\mathit{\ifmmode\bar\else\textasciimacron\fi{}}}$(\ensuremath{\tau}) in the gauge theory of the half-filled Landau level. It is found that ${\mathit{S}}_{\mathit{MM}\mathit{\ifmmode\bar\else\textasciimacron\fi{}}}$(\ensuremath{\tau})=(3-\ensuremath{\eta})[${\mathrm{\ensuremath{\Omega}}}_{0}$(\ensuremath{\eta})\ensuremath{\tau}${]}^{1/(3\mathrm{\ensuremath{-}}\mathrm{\ensuremath{\eta}})}$ for a class of interactions v(q)=${\mathit{V}}_{0}$/${\mathit{q}}^{\mathrm{\ensuremath{\eta}}}$ (0\ensuremath{\le}\ensuremath{\eta}2) between electrons. This means that the instanton--anti-instanton pairs are confining so that a well-defined ``charged'' composite fermion can exist. It is also shown that ${\mathit{S}}_{\mathit{MM}\mathit{\ifmmode\bar\else\textasciimacron\fi{}}}$(\ensuremath{\tau}) can be used to calculate the spectral function of electrons from the microscopic theory within a semiclassical approximation. The resulting spectral function varies as ${\mathit{e}}_{0}^{\mathrm{\ensuremath{-}}[\mathrm{\ensuremath{\Omega}}}$(\ensuremath{\eta})/\ensuremath{\omega}${]}^{1/(2\mathrm{\ensuremath{-}}\mathrm{\ensuremath{\eta}})}$ at low energies.

Locations

  • Physical review. B, Condensed matter - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Instanton method for the electron propagator 2002 Michael R. Geller
+ PDF Chat Instantons and fermion condensate in adjoint two-dimensional QCD 1994 Andrei Smilga
+ PDF Chat Instanton Sector of Correlated Electron Systems as the Origin of Populated Pseudo-gap and Flat “Band” Behavior: Analytic Solution 2008 С. И. Мухин
+ PDF Chat Instanton induced tunneling amplitude at excited states with the LSZ method 1996 Jian‐Ge Zhou
J.-Q. Liang
J. Burzlaff
H. J. W. Müller‐Kirsten
+ PDF Chat Towards a theory of instantons at non-zero Fermion density 1998 Gregory W. Carter
Dmitri Diakonov
+ Gluons, light and heavy quarks and their interactions in the instanton vacuum 2023 M.M. Musakhanov
+ PDF Chat Instanton contribution to the electromagnetic form factors of the nucleon 2004 Pietro Faccioli
+ PDF Chat Spectrum of the Dirac operator in a QCD instanton liquid: two versus three colors 1994 J. J. M. Verbaarschot
+ PDF Chat Instanton effective action formalism for 2-point and 4-point functions 2000 Filippus S. Roux
Tibor Torma
+ Real-time diagram technique for instantonic systems 2022 Nikita Kolganov
+ Instantons in QCD 1998 Thomas Schäfer
Edward Shuryak
+ PDF Chat The bound states and instanton molecules at T≳Tc 2004 Gerald E. Brown
Chang‐Hwan Lee
Mannque Rho
Edward Shuryak
+ Contribution of instantons to the correlation functions of a Heisenberg ferromagnet 1978 I. V. Frolov
A. S. Shvart︠s︡
+ PDF Chat Fermions in Instanton Anti-Instanton Background 1993 Riccardo Guida
Kenichi Konishi
+ PDF Chat Multi-instanton calculus in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mn /></mml:math>supersymmetric gauge theory 1996 Nicholas Dorey
Valentin V. Khoze
Michael P. Mattis
+ PDF Chat Tunneling rate for superparamagnetic particles by the instanton method 2002 Erlon H. Martins Ferreira
M. C. Nemes
+ Tetrahedron instantons in Donaldson-Thomas theory 2025 Nadir Fasola
Sergej Monavari
+ PDF Chat Alternative perspective on quantum tunneling and instantons 2005 Frédérik Paradis
H. Kröger
G. Melkonyan
K.J.M. Moriarty
+ PDF Chat Quark induced excitations of the instanton liquid 2002 С. В. Молодцов
A. Snigirev
G. M. Zinovjev
+ PDF Chat THE EUCLIDEAN PROPAGATOR IN A MODEL WITH TWO NON-EQUIVALENT INSTANTONS 2002 J. Casahorrán

Works That Cite This (37)

Action Title Year Authors
+ PDF Chat Nematic quantum phase transition of composite Fermi liquids in half-filled Landau levels and their geometric response 2016 Yizhi You
Gil Young Cho
Eduardo Fradkin
+ PDF Chat Effect of Magnetization on the Tunneling Anomaly in Compressible Quantum Hall States 2018 Debanjan Chowdhury
Brian Skinner
Patrick A. Lee
+ PDF Chat Semiclassical theory of the tunneling anomaly in partially spin-polarized compressible quantum Hall states 2018 Debanjan Chowdhury
Brian Skinner
Patrick A. Lee
+ PDF Chat Interlayer interactions and the Fermi energy of bilayer composite-fermion metals 2018 J. P. Eisenstein
L. N. Pfeiffer
K. W. West
+ PDF Chat Infrared catastrophe and tunneling into strongly correlated electron systems: Exact x-ray edge limit for the one-dimensional electron gas and two-dimensional Hall fluid 2006 Kelly R. Patton
Michael R. Geller
+ PDF Chat Electron-electron interactions, quantum Coulomb gap, and dynamical scaling near integer quantum Hall transitions 2002 Ziqiang Wang
Shanhui Xiong
+ PDF Chat Singularities in the Fermi-liquid description of a partially filled Landau level and the energy gaps of fractional quantum Hall states 1995 Ady Stern
Bertrand I. Halperin
+ PDF Chat Instanton method for the electron propagator 2002 Michael R. Geller
+ PDF Chat Gauge-invariant Green functions of Dirac fermions coupled to gauge fields 2002 D. V. Khveshchenko
+ PDF Chat Deconfined metal-insulator transitions in quantum Hall bilayers 2020 Liujun Zou
Debanjan Chowdhury