The equivariant Hurewicz map

Type: Article

Publication Date: 1992-01-01

Citations: 22

DOI: https://doi.org/10.1090/s0002-9947-1992-1049614-9

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a compact Lie group, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a based <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-space, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding="application/x-tex">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-representation. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi Subscript upper V Superscript upper G Baseline left-parenthesis upper Y right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>π<!-- π --></mml:mi> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi _V^G(Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the equivariant homotopy group of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding="application/x-tex">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript upper V Superscript upper G Baseline left-parenthesis upper Y right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_V^G(Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the equivariant ordinary homology group of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with Burnside ring coefficients in dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding="application/x-tex">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then there is an equivariant Hurewicz map <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h colon pi Subscript upper V Superscript upper G Baseline left-parenthesis upper Y right-parenthesis right-arrow upper H Subscript upper V Superscript upper G Baseline left-parenthesis upper Y right-parenthesis period"> <mml:semantics> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>:</mml:mo> <mml:msubsup> <mml:mi>π<!-- π --></mml:mi> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">h:\pi _V^G(Y) \to H_V^G(Y).</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> One should not expect this map to be an isomorphism, since <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript upper V Superscript upper G Baseline left-parenthesis upper Y right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_V^G(Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be a module over the Burnside ring, but <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi Subscript upper V Superscript upper G Baseline left-parenthesis upper Y right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>π<!-- π --></mml:mi> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi _V^G(Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> need not be. However, here it is shown that, under the obvious connectivity conditions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, this map induces an isomorphism between <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript upper V Superscript upper G Baseline left-parenthesis upper Y right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_V^G(Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an algebraically defined modification of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi Subscript upper V Superscript upper G Baseline left-parenthesis upper Y right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>π<!-- π --></mml:mi> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi _V^G(Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The equivariant Freudenthal Suspension Theorem contains a technical hypothesis that has no nonequivariant analog. Our results shed some light on the behavior of the suspension map when this rather undesirable technical hypothesis is not satisfied.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ West’s problem on equivariant hyperspaces and Banach-Mazur compacta 2003 Sergey A. Antonyan
+ PDF Chat Compact Lie group action and equivariant bordism 1984 S. S. Khare
+ PDF Chat Equivariant vector fields on spheres 1983 Unni Namboodiri
+ PDF Chat On the equivariant homotopy type of 𝐺-ANRs 1981 Sławomir Kwasik
+ PDF Chat Equivariant, almost homeomorphic maps between 𝑆¹ and 𝑆² 1995 Teruhiko Soma
+ PDF Chat Equivariant Infinite Loop Space Theory: The Space Level Story 2025 J. P. May
Mona Merling
Angélica M. Osorno
+ PDF Chat Foliation preserving Lie group actions and characteristic classes 1982 Haruo Suzuki
+ Equivariant 𝒟-modules on 2𝓍2𝓍𝓃 hypermatrices 2024 András Lőrincz
Michael D. Perlman
+ PDF Chat Compact group actions and maps into 𝐾(𝜋,1)-spaces 1985 Daniel Henry Gottlieb
Kyung B. Lee
Murad Özaydın
+ PDF Chat Kaehler structures on 𝐾_{𝐂}/(𝐏,𝐏) 1997 Meng-Kiat Chuah
+ Witten-Helffer-Sjöstrand theory for 𝑆¹-equivariant cohomology 1999 Hon-kit Wai
+ PDF Chat Equivariant bundles and cohomology 1986 Andrzej Kozłowski
+ Livsic theorems for connected Lie groups 2001 Mark Pollicott
C. Walkden
+ PDF Chat A note on the existence of 𝐺-maps between spheres 1987 Stefan Waner
+ PDF Chat Conical limit points and the Cannon-Thurston map 2016 Woojin Jeon
Ilya Kapovich
Christopher J. Leininger
Ken’ichi Ohshika
+ PDF Chat Stable maps into free 𝐺-spaces 1988 J. P. C. Greenlees
+ PDF Chat The equivariant extension theorem 1981 Richard Lashof
+ Smooth Lie group actions are parametrized diffeological subgroups 2011 Patrick Iglesias-Zemmour
Yael Karshon
+ Homotopy principles for equivariant isomorphisms 2015 Frank Kutzschebauch
Finnur Lárusson
Gerald W. Schwarz
+ A stroll in equivariant 𝐾-theory 2024 Chi-Kwong Fok