Statistic of the winding of geodesics on a Riemann surface with finite area and constant negative curvature

Type: Article

Publication Date: 1997-08-31

Citations: 13

DOI: https://doi.org/10.4171/rmi/225

Abstract

In this paper we show that the windings of geodesics around the cusps of a Riemann surface of finite area behave asymptotically as independent Cauchy variables.

Locations

  • Revista Matemática Iberoamericana - View - PDF
  • Hispana - View - PDF

Similar Works

Action Title Year Authors
+ Windings of prime geodesics 2022 Claire Burrin
Flemming von Essen
+ Windings of Prime Geodesics 2024 Claire Burrin
Flemming von Essen
+ Asymptotic Windings of Brownian Motion Paths on Riemann Surfaces 2001 Shinzo Watanabe
+ PDF Chat The prime geodesic theorem 2012 K. Soundararajan
Matthew P. Young
+ PDF Chat The length of closed geodesics on random Riemann surfaces 2010 Eran Makover
Jeffrey McGowan
+ Ergodic theory of infinite measure preserving geodesic flows on surfaces with constant negative curvature 1983 寛 白川
+ Non-simple systoles on random hyperbolic surfaces for large genus 2023 Yuxin He
Yang Shen
Yunhui Wu
Yuhao Xue
+ Entropy in the cusp and phase transitions for geodesic flows 2015 Godofredo Iommi
Felipe Riquelme
Aníbal Velozo
+ Entropy in the cusp and phase transitions for geodesic flows 2015 Godofredo Iommi
Felipe Riquelme
Aníbal Velozo
+ PDF Chat Entropy in the cusp and phase transitions for geodesic flows 2018 Godofredo Iommi
Felipe Riquelme
Aníbal Velozo
+ PDF Chat Fluctuations of Time Averages Around Closed Geodesics in Non-Positive Curvature 2021 Daniel J. Thompson
Tianyu Wang
+ The Riemann Zeta Function 2006 Stephen C. Roy
+ The Riemann Zeta Function 2005
+ The Riemann Zeta Function 2004
+ The Riemann Zeta Function 2010
+ The Riemann zeta function 2023 Prapanpong Pongsriiam
+ The Riemann zeta function 2020 Roger Plymen
+ The Riemann zeta function 2019 Dimitris Koukoulopoulos
+ The Riemann zeta function 2015
+ The Riemann Zeta Function 1999 Stan Wagon