The Class of Subexponential Distributions

Type: Article

Publication Date: 1975-12-01

Citations: 220

DOI: https://doi.org/10.1214/aop/1176996225

Abstract

The class $\mathscr{J}$ of subexponential distributions is characterized by $F(0) = 0, 1 - F^{(2)} (x) \sim 2\{1 - F(x)\}$ as $x \rightarrow \infty$. New properties of the class $\mathscr{J}$ are derived as well as for the more general case where $1 - F^{(2)} (x) \sim \beta\{1 - F(x)\}$. An application to transient renewal theory illustrates these results as does an adaptation of a result of Greenwood on randomly stopped sums of subexponentially distributed random variables.

Locations

  • The Annals of Probability - View - PDF

Similar Works

Action Title Year Authors
+ The class of subexponential distributions 1969 Jozef L. Teugels
+ The Subexponential Class of Probability Distributions 1975 J. L. Teugels
+ Transient renewal processes in the subexponential case 1987 Emily S. Murphree
+ Transient renewal processes in the subexponential case 1987 Emily S. Murphree
+ Catastrophes, Conspiracies, and Subexponential Distributions 2022
+ On the non-closure under convolution of the subexponential family 1989 J. R. Leslie
+ On the non-closure under convolution of the subexponential family 1989 J. R. Leslie
+ PDF Chat An Introduction to Heavy-Tailed and Subexponential Distributions 2013 Sergey Foss
Dmitry Korshunov
Stan Zachary
+ Subexponential Distributions 2013 Sergey Foss
Dmitry Korshunov
Stan Zachary
+ Subexponential Distributions 2011 Sergey Foss
Dmitry Korshunov
Stan Zachary
+ A characterization of an exponential distribution based on renewals 1995 A. Obretenov
+ Some new results on the subexponential class 1989 Emily S. Murphree
+ Some new results on the subexponential class 1989 Emily S. Murphree
+ PDF Chat Subexponential distributions and characterizations of related classes 1989 Claudia Klüppelberg
+ PDF Chat Randomly Stopped Sums with Generalized Subexponential Distribution 2023 Jūratė Karasevičienė
Jonas Šiaulys
+ Subexponential Distributions 2004 Eric Willekens
+ Aging renewal process characterizations of exponential distributions 1993 Manish C. Bhattacharjee
+ Randomly Stopped Sums with Generalized Subexponential Distribution 2023 Jūratė Karasevičienė
Jonas Šiaulys
+ An Introduction to Heavy-Tailed and Subexponential Distributions 2011 Sergey Foss
Dmitry Korshunov
Stan Zachary
+ Beyond the Poisson renewal process: A tutorial survey 2006 Francesco Mainardi
Rudolf Gorenflo
A. Vivoli

Works Cited by This (0)

Action Title Year Authors