Almost All Palindromes Are Composite

Type: Article

Publication Date: 2004-01-01

Citations: 29

DOI: https://doi.org/10.4310/mrl.2004.v11.n6.a10

Abstract

We study the distribution of palindromic numbers (with respect to a fixed base g ≥ 2) over certain congruence classes, and we derive a nontrivial upper bound for the number of prime palindromes n ≤ x as x → ∞.Our results show that almost all palindromes in a given base are composite.

Locations

  • Mathematical Research Letters - View - PDF
  • arXiv (Cornell University) - View - PDF
  • MOspace Institutional Repository (University of Missouri) - View - PDF

Similar Works

Action Title Year Authors
+ Almost all palindromes are composite 2004 William D. Banks
Derrick Hart
Mayumi Sakata
+ Power values of palindromes 2009 Javier Cilleruelo
Florian Luca
Igor E. Shparlinski
+ PDF Chat Prime divisors of palindromes 2005 William D. Banks
Igor E. Shparlinski
+ Counting relatively prime pairs of palindromes 2023 Hirotaka Kobayashi
Yuta Suzuki
Ryota Umezawa
+ On the palindromic decomposition of binary words 2010 Alex Ravsky
+ Intrinsic palindromic numbers 2001 Antonio J. Di Scala
Martı́n Sombra
+ PDF Chat Most integers are not a sum of two palindromes 2024 Dmitrii Zakharov
+ Palindromic Numbers 2015
+ The density of generalized Smarandache palindromes 2004 Charles Ashbacher
Lori Neirynck
+ PDF Chat Antipalindromic numbers 2021 Ľubomíra Dvořáková
Stanislav Kruml
David Ryzák
+ PDF Chat On the Numbers of Palindromes 2016 Sejeong Bang
Yan‐Quan Feng
Jaeun Lee
+ PDF Chat Most integers are not a sum of two palindromes 2024 Dmitrii Zakharov
+ On Palindromes and Palindromic Primes 1969 Hyman Gabai
Daniel Coogan
+ Minimum Critical Exponents for Palindromes 2016 Jeffrey Shallit
+ Palindromes in Finite Groups 2019 Dagur Tómas Ásgeirsson
+ Infinitude of palindromic almost-prime numbers 2023 Aleksandr Tuxanidy
Daniel Panario
+ A characterization of prime $v$-palindromes 2023 Muhammet Boran
Garam Choi
Steven J. Miller
Jesse Purice
Daniel Tsai
+ Palindromes and Anagrams 1973 Jezebel Q. Xixx
+ Palindromes and Anagrams 1973 Howard W. Bergerson
+ Reversals and palindromes in continued fractions 2007 Boris Adamczewski
Jean‐Paul Allouche