An answer to a question of M. Newman on matrix completion

Type: Article

Publication Date: 1986-01-01

Citations: 6

DOI: https://doi.org/10.1090/s0002-9939-1986-0835863-1

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a principal ideal ring, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a symmetric <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding="application/x-tex">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-by-<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding="application/x-tex">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding="application/x-tex">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-by-<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis n minus t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(n - t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding="application/x-tex">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-by-<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper A comma upper B right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is primitive. Newman [<bold>2</bold>] proved that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper A comma upper B right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be completed (as the first <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding="application/x-tex">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> rows) to a symmetric <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-by-<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix of determinant 1, provided that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to t less-than-or-equal-to n slash 3"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>t</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">1 \leq t \leq n/3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. He showed that the result is false, in general, if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t equals n slash 2"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">t = n/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and he asked to determine all values of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding="application/x-tex">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to t less-than-or-equal-to n"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>t</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1 \leq t \leq n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the result holds. It is shown here that these values are exactly <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding="application/x-tex">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfying <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to t less-than-or-equal-to n slash 2"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>t</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">1 \leq t \leq n/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, the result is proved for a larger (than the principal ideal rings) class of commutative rings, namely, for the rings satisfying the second stable range condition of Bass [<bold>1</bold>]. Also, it is observed that Theorems 2 and 3 of [<bold>2</bold>, p. 40] proved there for principal ideal rings are true for this larger class of rings, as well as the basic result of [<bold>2</bold>, p. 39].

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Bernstein-Gelfand-Gelfand meets geometric complexity theory: resolving the 2×2 permanents of a 2×𝐧 matrix 2025 Fulvio Gesmundo
Hang Huang
Hal Schenck
Jerzy Weyman
+ PDF Chat A variant of the diamond principle for combinatorial ideals 1999 Yoshihiro Abe
+ PDF Chat On an analogue of Selberg’s eigenvalue conjecture for 𝑆𝐿₃(𝐙) 1998 Sultan Catto
J. M. Huntley
Jay Jorgenson
David E. Tepper
+ PDF Chat On a question concerning countably generated 𝑧-ideals of 𝐶(𝑋) 1980 Attilio Le Donne
+ PDF Chat Matrix commutators over an algebraically closed field 1975 Peter M. Gibson
+ PDF Chat Two questions on scalar-reflexive rings 1992 Nicole Snashall
+ PDF Chat Extending a Jordan ring homomorphism 1973 Robert Lewand
+ PDF Chat Coefficient ideals 1991 Kishor Shah
+ PDF Chat What makes 𝑇𝑜𝑟^{𝑅}₁(𝑅/𝐼,𝐼) free? 1991 Shirō Gotō
Naoyoshi Suzuki
+ When does a perturbation of the equations preserve the normal cone? 2023 Phạm Hùng Quý
Ngô Viêt Trung
+ PDF Chat The row rank of a subring of a matrix ring 1987 M. S. Li
J. M. Zelmanowitz
+ PDF Chat A complex that resolves the ideal of minors having 𝑛-1 columns in common 1981 José Filipe Silva de Andrade
Aron Simis
+ PDF Chat Reducing the rank of (𝐴-𝜆𝐵) 1970 Gerald L. Thompson
Roman L. Weil
+ PDF Chat A note on complete intersections 1982 S. M. Bhatwadekar
+ PDF Chat Divinsky’s radical 1972 Patrick N. Stewart
+ PDF Chat On the surjectivity criterion for Buchsbaum modules 1990 Shirō Gotō
+ PDF Chat Matrices whose powers are 𝑀-matrices or 𝑍-matrices 1987 Shmuel Friedland
Daniel Hershkowitz
Hans Schneider
+ A proof of Weinberg’s conjecture on lattice-ordered matrix algebras 2002 Jingjing Ma
Piotr J. Wojciechowski
+ PDF Chat A brief proof of Jacobian hypothesis implies flatness 1990 Masayoshi Miyanishi
Lorenzo Robbiano
Stuart Sui Sheng Wang
+ PDF Chat On ranges of polynomials in finite matrix rings 1990 Chen-Lian Chuang