Critical noise of majority-vote model on complex networks

Type: Article

Publication Date: 2015-02-24

Citations: 46

DOI: https://doi.org/10.1103/physreve.91.022816

Abstract

The majority-vote model with noise is one of the simplest nonequilibrium statistical model that has been extensively studied in the context of complex networks. However, the relationship between the critical noise where the order-disorder phase transition takes place and the topology of the underlying networks is still lacking. In this paper, we use the heterogeneous mean-field theory to derive the rate equation for governing the model's dynamics that can analytically determine the critical noise ${f}_{c}$ in the limit of infinite network size $N\ensuremath{\rightarrow}\ensuremath{\infty}$. The result shows that ${f}_{c}$ depends on the ratio of $\ensuremath{\langle}k\ensuremath{\rangle}$ to $\ensuremath{\langle}{k}^{3/2}\ensuremath{\rangle}$, where $\ensuremath{\langle}k\ensuremath{\rangle}$ and $\ensuremath{\langle}{k}^{3/2}\ensuremath{\rangle}$ are the average degree and the $3/2$ order moment of degree distribution, respectively. Furthermore, we consider the finite-size effect where the stochastic fluctuation should be involved. To the end, we derive the Langevin equation and obtain the potential of the corresponding Fokker-Planck equation. This allows us to calculate the effective critical noise ${f}_{c}(N)$ at which the susceptibility is maximal in finite-size networks. We find that the ${f}_{c}\ensuremath{-}{f}_{c}(N)$ decays with $N$ in a power-law way and vanishes for $N\ensuremath{\rightarrow}\ensuremath{\infty}$. All the theoretical results are confirmed by performing the extensive Monte Carlo simulations in random $k$-regular networks, Erd\"os-R\'enyi random networks, and scale-free networks.

Locations

  • Physical Review E - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Quenched mean-field theory for the majority-vote model on complex networks 2017 Feng Huang
Hanshuang Chen
Chuansheng Shen
+ PDF Chat Phase transitions in a multistate majority-vote model on complex networks 2018 Hanshuang Chen
Guofeng Li
+ PDF Chat Critical Short-Time Behavior of Majority-Vote Model on Scale-Free Networks 2024 D. S. M. Alencar
J. F. S. Neto
T. F. A. Alves
F. W. S. Lima
R. S. Ferreira
G. A. Alves
A. Macedo-Filho
+ PDF Chat MAJORITY-VOTE MODEL ON OPINION-DEPENDENT NETWORK 2013 F. W. S. Lima
+ PDF Chat Impact of site dilution and agent diffusion on the critical behavior of the majority-vote model 2012 Nuno Crokidakis
Paulo Murilo Castro de Oliveira
+ Three-state Majority-Vote Model on Barabási-Albert and Cubic Networks and the Unitary Relation for Critical Exponents 2019 André L. M. Vilela
Bernardo J. Zubillaga
Chao Wang
Minggang Wang
Ruijin Du
H. Eugene Stanley
+ Three-state Majority-Vote Model on Barabási-Albert and Cubic Networks and the Unitary Relation for Critical Exponents 2019 André L. M. Vilela
Bernardo J. Zubillaga
Chao Wang
Minggang Wang
Ruijin Du
H. Eugene Stanley
+ PDF Chat Nonequilibrium model on Apollonian networks 2012 F. W. S. Lima
André A. Moreira
Ascânio D. Araújo
+ PDF Chat The phase diagram and critical behavior of the three-state majority-vote model 2010 Diogo F F Melo
Luiz Felipe C. Pereira
F. G. Brady Moreira
+ PDF Chat Non-Markovian majority-vote model 2020 Hanshuang Chen
Shuang Wang
Chuansheng Shen
Haifeng Zhang
Ginestra Bianconi
+ Droplet Finite-Size Scaling of the Majority Vote Model on Quenched Scale-Free Networks 2023 D. S. M. Alencar
T. F. A. Alves
F. W. S. Lima
R. S. Ferreira
G. A. Alves
A. Macedo-Filho
+ The precursor of the critical transitions in majority vote model with the noise feedback from the vote layer 2023 Wei Liu
Jincheng Wang
Fangfang Wang
Kai Qi
Zengru Di
+ Destructive social noise effects on homogeneous and heterogeneous networks: Induced-phases in the majority-rule model 2023 Didi Ahmad Mulya
Roni Muslim
+ PDF Chat Majority-vote model on random graphs 2005 Luiz Felipe C. Pereira
F. G. Brady Moreira
+ PDF Chat MAJORITY-VOTE MODEL WITH HETEROGENEOUS AGENTS ON SQUARE LATTICE 2013 F. W. S. Lima
+ Boolean Dynamics of Kauffman Models with a Scale-Free Network 2005 Kazumoto Iguchi
Shuichi Kinoshita
Hiroaki Yamada
+ Boolean Dynamics of Kauffman Models with a Scale-Free Network 2005 Kazumoto Iguchi
Shuichi Kinoshita
Hiroaki S. Yamada
+ PDF Chat The noisy voter model on complex networks 2016 Adrián Carro
Raúl Toral
M. San Miguel
+ PDF Chat Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes 2016 Cesar I. N. Sampaio Filho
T. B. dos Santos
André A. Moreira
F. G. Brady Moreira
José S. Andrade
+ PDF Chat Critical exponents of master-node network model 2023 Antonio Mihara
Anderson A. Ferreira
André C. R. Martins
Fernando F. Ferreira