Spherically Averaged Endpoint Strichartz Estimates For The Two­Dimensional Schrödinger Equation

Type: Article

Publication Date: 1999-01-01

Citations: 109

DOI: https://doi.org/10.1080/03605300008821556

Abstract

Abstract The endpoint Strichartz estimates for the Schrödinger equation is known to be false in two dimensions[7]. However, if one averages the solution in L2 in the angular variable, we show that the homogeneous endpoint and the retarded half­endoint estimates hold, but the full retarded endpoint fails. In particular, the original verisions of these estimates hold for radial data

Locations

  • Communications in Partial Differential Equations - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • Communications in Partial Differential Equations - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation 1998 Terence Tao
+ Spherical Averaged Endpoint Strichartz Estimates for The Two-dimensional Schrodinger Equations with Inverse Square Potential 2008 I‐Kun Chen
+ PDF Strichartz estimates for the Schrödinger equation with radial data 2000 Atanas Stefanov
+ SPHERICAL AVERAGED ENDPOINT STRICHARTZ ESTIMATES FOR THE TWO-DIMENSIONAL SCHRÖDINGER EQUATION WITH INVERSE SQUARE POTENTIAL 2010 I‐Kun Chen
+ PDF Chat Endpoint Strichartz estimates with angular integrability and some applications 2022 Jungkwon Kim
Yoonjung Lee
Ihyeok Seo
+ Endpoint Strichartz estimates with angular integrability and some applications 2019 Jungkwon Kim
Yoonjung Lee
Ihyeok Seo
+ Endpoint Strichartz estimates for the Klein–Gordon equation in two space dimensions and some applications 2010 Jun Kato
Tohru Ozawa
+ PDF Chat Remarks on endpoint Strichartz estimates for Schrödinger equations with the critical inverse-square potential 2017 Haruya Mizutani
+ Radial Strichartz Estimates with Application to the 2-D Dirac-Klein-Gordon System 2012 Evgeni Y. Ovcharov
+ Remarks on endpoint Strichartz estimates for Schrödinger equations with the critical inverse-square potential 2016 Haruya Mizutani
+ Remark on the Strichartz estimates in the radial case 2011 Yuqin Ke
+ PDF Regularity of solutions to the free Schrödinger equation with radial initial data 2001 Mari Cruz Vilela
+ PDF Chat Strichartz estimates for non‐degenerate Schrödinger equations 2020 Kouichi Taira
+ Weighted Strichartz Estimates for the Radial Perturbed Schrödinger Equation on the Hyperbolic Space 2006 Vittoria Pierfelice
+ A sharpened Strichartz inequality for radial functions 2018 Felipe Gonçalves
+ PDF Global endpoint Strichartz estimates for Schrödinger equations on the cylinder <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e40" altimg="si2.svg"><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">×</mml:mo><mml:mi mathvariant="double-struck">T</mml:mi></mml:mrow></mml:math> 2021 Alexander Barron
Michael Christ
Benoît Pausader
+ On the boundary Strichartz estimates for wave and Schrödinger equations 2018 Zihua Guo
Ji Li
Kenji Nakanishi
Lixin Yan
+ Weighted Strichartz estimates with angular integrability and their applications 2019 Jungkwon Kim
Yoonjung Lee
Ihyeok Seo
+ PDF Chat Sharp spherically averaged Strichartz estimates for the Schrödinger equation 2016 Zihua Guo
+ Weighted Strichartz estimates for radial Schr\"odinger equation on noncompact manifolds 2007 Valeria Banica
Thomas Duyckaerts