Domains of fractional powers of the Stokes operator in Lr spaces

Type: Article

Publication Date: 1985-01-01

Citations: 210

DOI: https://doi.org/10.1007/bf00276874

Locations

  • Archive for Rational Mechanics and Analysis - View

Similar Works

Action Title Year Authors
+ Domains of fractional powers of ordinary differential operators in spaces Lp 1977 И. Д. Евзеров
+ Fractional powers of operators corresponding to coercive problems in Lipschitz domains 2013 M. S. Agranovich
A. M. Selitskii
+ Characterizations of domains of fractional powers for non-negative operators 2015 Chuang Chen
Miao Li
+ A constructive description of the domains of definition of fractional powers of elliptic operators 1976 L. V. Koledov
+ Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications 1990 Shuping Chen
Roberto Triggiani
+ Interpolation and Domains of Fractional Powers 1999 H. O. Fattorini
+ Spectral mapping theorem for fractional powers in locally convex spaces 1997 Celso Martínez
Miguel Á. Sanz
+ PDF Chat Fractional Sobolev Spaces 2012 Françoise Demengel
Gilbert Demengel
+ PDF Chat Fractional Sobolev spaces 2023
+ Fractional powers of non-densely defined operators 1991 Celso Martínez
Miguel Á. Sanz
+ Fundamental Properties of Fractional Powers of Unbounded Operators in Banach Spaces 2024 V. S. Belonosov
A. Yu. Shvets
+ PDF Chat Fractional powers of closed operators 1972 H. Hövel
U. Westphal
+ PDF Chat Radial extensions in fractional Sobolev spaces 2018 Haı̈m Brezis
Petru Mironescu
Itai Shafrir
+ Fractional powers of the Schrödinger operator on weigthed Lipschitz spaces 2021 Bruno Bongioanni
Eleonor Harboure
Pablo Quijano
+ Composition Operators on Spaces of Fractional Cauchy Transforms 2010 Rita A. Hibschweiler
+ Question of the domains of definition of fractional powers of accretive operators 1988 A. M. Gomilko
+ Basic results for fractional anisotropic spaces and applications 2024 J. Vanterler da C. Sousa
Arhrrabi Elhoussain
El-Houari Hamza
Leandro S. Tavares
+ Traces for fractional Sobolev spaces with variable exponents 2017 Leandro Martin del Pezzo
Julio D. Rossi
+ The representation of fractional powers of coercive differential operators 2014 Jingren Qiang
Quan Zheng
Miao Li
+ Spaces of fractional quotients, discrete operators, and their applications. I 1999 И. К. Лифанов
L. N. Poltavskii

Works That Cite This (203)

Action Title Year Authors
+ 非圧縮性ナビエ・ストークス方程式の定常・非定常流の調和解析的研究 2015 小薗 英雄
+ Uniform stabilization in Besov spaces with arbitrary decay rates of the magnetohydrodynamic system by finite-dimensional interior localized static feedback controllers 2024 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ Inhomogeneous Navier–Stokes equations in the half-space, with only bounded density 2014 Raphaël Danchin
Ping Zhang
+ PDF Chat Uniform Stabilization of 3D Navier–Stokes Equations in Low Regularity Besov Spaces with Finite Dimensional, Tangential-Like Boundary, Localized Feedback Controllers 2021 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ Incompressible inhomogeneous fluids in bounded domains of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> with bounded density 2019 Reinhard Farwig
Chenyin Qian
Ping Zhang
+ PDF Chat Finite-dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory 2021 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ PDF Chat Semi-Group Theory for the Stokes Operator with Navier-Type Boundary Conditions on L p -Spaces 2016 Hind Al Baba
Chérif Amrouche
Miguel Escobedo
+ L-theory of the Kelvin–Voigt equations in bounded domains 2016 Pedro D. Damázio
Patrícia Manholi
Ana L. Silvestre
+ PDF Chat Uniform Stabilization of Navier–Stokes Equations in Critical $$L^q$$-Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls 2019 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ PDF Chat Uniform stabilization of Boussinesq systems in critical &lt;inline-formula&gt;&lt;tex-math id="M1"&gt;\begin{document}$ \mathbf{L}^q $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls 2020 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani