Three-dimensional numerical relativity: The evolution of black holes

Type: Article

Publication Date: 1995-08-15

Citations: 123

DOI: https://doi.org/10.1103/physrevd.52.2059

Abstract

We report on a new 3D numerical code designed to solve the Einstein equations for general vacuum spacetimes. This code is based on the standard 3+1 approach using cartesian coordinates. We discuss the numerical techniques used in developing this code, and its performance on massively parallel and vector supercomputers. As a test case, we present evolutions for the first 3D black hole spacetimes. We identify a number of difficulties in evolving 3D black holes and suggest approaches to overcome them. We show how special treatment of the conformal factor can lead to more accurate evolution, and discuss techniques we developed to handle black hole spacetimes in the absence of symmetries. Many different slicing conditions are tested, including geodesic, maximal, and various algebraic conditions on the lapse. With current resolutions, limited by computer memory sizes, we show that with certain lapse conditions we can evolve the black hole to about $t=50M$, where $M$ is the black hole mass. Comparisons are made with results obtained by evolving spherical initial black hole data sets with a 1D spherically symmetric code. We also demonstrate that an ``apparent horizon locking shift'' can be used to prevent the development of large gradients in the metric functions that result from singularity avoiding time slicings. We compute the mass of the apparent horizon in these spacetimes, and find that in many cases it can be conserved to within about 5\% throughout the evolution with our techniques and current resolution.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D. Particles and fields - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Numerical relativity for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>D</mml:mi></mml:math>dimensional axially symmetric space-times: Formalism and code tests 2010 Miguel Zilh茫o
Helvi Witek
Ulrich Sperhake
V铆tor Cardoso
Leonardo Gualtieri
Carlos Herdeiro
Andrea Nerozzi
+ 3D Numerical Relativity at NCSA 1994 Peter Anninos
Karen Camarda
John Towns
Joan Mass贸
Malcolm Tobias
Wai-Mo Suen
Edward Seidel
+ 3D Numerical Relativity at NCSA 1994 Peter Anninos
Karen Camarda
Joan Mass贸
Edward Seidel
Wai-Mo Suen
Malcolm Tobias
John Towns
+ Three Dimensional Numerical Relativity with a Hyperbolic Formulation 1998 C. Bona
Joan Mass贸
Edward Seidel
P. N. Walker
+ PDF Chat Three-dimensional simulations of distorted black holes: Comparison with axisymmetric results 1999 Karen Camarda
Edward Seidel
+ Numerical Evolution of Dynamic 3D Black Holes: Extracting Waves 1997 Karen Camarda
E. Seidel
+ Numerical Relativity: Towards Simulations of 3D Black Hole Coalescence 1998 Naresh Dadhich
J. Narliker
E. Seidel
+ A 3+1 Computational Scheme for Dynamic Spherically Symmetric Black Hole Spacetimes -- II: Time Evolution 1999 Jonathan Thornburg
+ PDF Chat Event and Apparent Horizon Finders for 3 + 1 Numerical Relativity 2007 Jonathan Thornburg
+ PDF Chat Tetrad formalism for numerical relativity on conformally compactified constant mean curvature hypersurfaces 2011 J. Bardeen
Olivier Sarbach
Luisa T. Buchman
+ PDF Chat A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity 2003 Jonathan Thornburg
+ A 3D Apparent Horizon Finder 1994 Joseph Libson
Joan Mass贸
Edward Seidel
Wai-Mo Suen
+ Initial Data for Dynamic Black Hole Spacetimes in 3+1 Numerical Relativity 1998 Jonathan Thornburg
+ PDF Chat The rotating black hole interior: Insights from gravitational collapse in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>AdS</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> spacetime 2020 Alex Pandya
Frans Pretorius
+ PDF Chat Slicing conditions for axisymmetric gravitational collapse of Brill waves 2018 Anton Khirnov
Tom谩拧 Ledvinka
+ PDF Chat Dynamic fisheye grids for binary black hole simulations 2014 Miguel Zilh茫o
Scott C. Noble
+ PDF Chat Evolutions in 3D numerical relativity using fixed mesh refinement 2004 Erik Schnetter
Scott H. Hawley
Ian Hawke
+ PDF Chat Constant crunch coordinates for black hole simulations 2001 Adrian P Gentle
D. E. Holz
Arkady Kheyfets
Pablo Laguna
Warner A. Miller
Deirdre Shoemaker
+ PDF Chat Moving black holes in 3D 1998 Roberto G贸mez
Luis Lehner
R. L. Marsa
Jeffrey Winicour
+ Event and Apparent Horizon Finders for 3+1 Numerical Relativity 2005 Thornburg Jonathan