Type: Article
Publication Date: 2014-01-01
Citations: 3
DOI: https://doi.org/10.1155/2014/654949
Batah et al. (2009) combined the unbiased ridge estimator and principal components regression estimator and introduced the modified<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>r</mml:mi><mml:mtext>-</mml:mtext><mml:mi>k</mml:mi></mml:math>class estimator. They also showed that the modified<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>r</mml:mi><mml:mtext>-</mml:mtext><mml:mi>k</mml:mi></mml:math>class estimator is superior to the ordinary least squares estimator and principal components regression estimator in the mean squared error matrix. In this paper, firstly, we will give a new method to obtain the modified<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>r</mml:mi><mml:mtext>-</mml:mtext><mml:mi>k</mml:mi></mml:math>class estimator; secondly, we will discuss its properties in some detail, comparing the modified<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>r</mml:mi><mml:mtext>-</mml:mtext><mml:mi>k</mml:mi></mml:math>class estimator to the ordinary least squares estimator and principal components regression estimator under the Pitman closeness criterion. A numerical example and a simulation study are given to illustrate our findings.