Comparison of Some Estimators under the Pitman’s Closeness Criterion in Linear Regression Model

Type: Article

Publication Date: 2014-01-01

Citations: 3

DOI: https://doi.org/10.1155/2014/654949

Abstract

Batah et al. (2009) combined the unbiased ridge estimator and principal components regression estimator and introduced the modified<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>r</mml:mi><mml:mtext>-</mml:mtext><mml:mi>k</mml:mi></mml:math>class estimator. They also showed that the modified<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>r</mml:mi><mml:mtext>-</mml:mtext><mml:mi>k</mml:mi></mml:math>class estimator is superior to the ordinary least squares estimator and principal components regression estimator in the mean squared error matrix. In this paper, firstly, we will give a new method to obtain the modified<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>r</mml:mi><mml:mtext>-</mml:mtext><mml:mi>k</mml:mi></mml:math>class estimator; secondly, we will discuss its properties in some detail, comparing the modified<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>r</mml:mi><mml:mtext>-</mml:mtext><mml:mi>k</mml:mi></mml:math>class estimator to the ordinary least squares estimator and principal components regression estimator under the Pitman closeness criterion. A numerical example and a simulation study are given to illustrate our findings.

Locations

  • Journal of Applied Mathematics - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ A Summary of Some Research on PC and Bayesian PC Criterion in China 2014 Laisheng Wei
+ PDF Chat Superiority of the MCRR Estimator Over Some Estimators In A Linear Model 2011 Feras Sh. M. Batah
+ The Superiority about a Class of Linear Estimaton of Regression Coefficient under Pitman Closeness Criterion 1997 Ang Y
+ The superiorities about generalized ridge estimator of regression coefficients in Gauss-Markov model 2014 Wei Yin
+ Further research on the principal component two-parameter estimator in linear model 2013 Hu Yang
Jiewu Huang
+ On the Performance of the r-k Class Estimator in Partial Linear Model 2019 Yong Li
Jibo Wu
+ Combining modified ridge-type and principal component regression estimators 2020 Adewale F. Lukman
Kayode Ayinde
Olajumoke Oludoun
C. A. Onate
+ A Comparison Study of Ridge Regression and Principle Component Regression with Application 2016 Gariballa Abdelmageed Abdelgadir
Hussein Eledum
+ The small sample properties of the restricted principal component regression estimator in linear regression model 2016 Jibo Wu
+ PDF Chat STUDY OF SOME KINDS OF ALMOST UNBIASED ESTIMATOR AND PRINCIPLE COMPONENT ESTIMATOR FOR REGRESSION MODEL 2020 Mustafa Nadhim Lattef
Mustafa Ismaeel Naif
+ Two Sufficient Conditions for Generalized Ridge Estimator Better than Least Square Estimator 2006 Renyu Ye
Jianjun Zeng
+ Combining generalized ridge principal component estimate in linear model 2008 Yang Hong-zhi
+ Combining principal component and robust ridge estimators in linear regression model with multicollinearity and outlier 2022 Kingsley Chinedu Arum
Fidelis Ifeanyi Ugwuowo
+ Combination of the modified Kibria–Lukman and the principal component regression estimators 2023 Dan Huang
Jiewu Huang
Dewei Bai
+ Ridge parameter estimation for the linear regression model under different loss functions using T-K approximation 2021 Qasim Ramzan
Muhammad Nauman Akram
Muhammad Amin
+ PDF Chat A comparison of some new and old robust ridge regression estimators 2019 Sajid Ali
Himmad Khan
Ismail Shah
Muhammad Moeen Butt
Muhammad Suhail
+ Superiority of the<i>r</i>–<i>k</i>Class Estimator Over Some Estimators In A Linear Model 2012 Gülesen Üstündağ Şiray
Sadullah Sakallıoğlu
+ Further research on the modified ridge principal component estimator in linear model 2022 Hongmei Chen
Jibo Wu
Golam Kibria
+ Modified Ridge Type Estimator in Partially Linear Regression Models and Numerical Comparisons 2016 Dursun Aydın
Bahadır Yüzbaşı
S. Ejaz Ahmed
+ A robust estimation method for the linear regression model parameters with correlated error terms and outliers 2021 Sajjad Piradl
Ali Shadrokh
Masoud Yarmohammadi