Crickets, zippers and the Bers universal Teichmüller space

Type: Article

Publication Date: 1990-01-01

Citations: 6

DOI: https://doi.org/10.1090/s0002-9939-1990-1028037-6

Abstract

This paper contains a simple characterization of the conformal mappings <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the unit disk <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding="application/x-tex">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose Schwarzians lie in the closure of the Bers universal Teichmüller space. A second characterization is given and three examples are studied for the case where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis upper U right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>U</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(U)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the complement of a quasiarc.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Conformal Grushin spaces 2016 Matthew Romney
+ PDF Chat Multiplicity theory and the outer boundary 1991 John S. Spraker
+ PDF Chat Mating the Basilica with a Siegel disk 2015 Jonguk Yang
+ PDF Chat Holomorphic retracts of polyballs 1986 Tadeusz Kuczumow
+ Convergence of Teichmüller deformations in the universal Teichmüller space 2019 Hideki Miyachi
Dragomir Šarić
+ Conformal embedding and twisted theta functions at level one 2019 Swarnava Mukhopadhyay
Hacen Zelaci
+ The generalized Lichnerowicz problem: Uniformly quasiregular mappings and space forms 2006 Gaven Martin
Volker Mayer
Kirsi Peltonen
+ PDF Chat Book Review: Conformal geometry and quasiregular mappings 1989 Juan J. Manfredi
+ PDF Chat On Teichmüller contraction 1993 Frederick P. Gardiner
+ Conformal fitness and uniformization of holomorphically moving disks 2015 Saeed Zakeri
+ PDF Chat Cyclicity in the Drury-Arveson space and other weighted Besov spaces 2023 Alexandru Aleman
Karl‐Mikael Perfekt
Stefan Richter
Carl Johan Sundberg
James Sunkes
+ PDF Chat Martin compactifications and quasiconformal mappings 1985 Shigeo Segawa
Toshimasa Tada
+ and applications to conformal geometry 2002 Pengfei Guan
Jeff Viaclovsky
Guofang Wang
+ PDF Chat Conformal Models and Fingerprints of Pseudo-lemniscates 2016 Trevor Richards
Malik Younsi
+ PDF Chat Conformal images of Carleson curves 2022 Christopher J. Bishop
+ PDF Chat Conformal distortion of boundary sets 1988 David Hamilton
+ On criteria for extremality of Teichmüller mappings 2004 Guowu Yao
+ PDF Chat Inradius and integral means for Green’s functions and conformal mappings 1998 Rodrigo Bañuelos
Tom Carroll
Elizabeth A. Housworth
+ PDF Chat Conformal geometry 2022
+ PDF Chat Compact conformally flat hypersurfaces 1985 Manfredo do Carmo
Marcos Dajczer
Francesco Mercuri