Multidimensional characteristic Galerkin methods for hyperbolic systems

Type: Article

Publication Date: 1997-09-10

Citations: 28

DOI: https://doi.org/10.1002/(sici)1099-1476(19970910)20:13<1111::aid-mma903>3.0.co;2-1

Locations

  • Mathematical Methods in the Applied Sciences - View

Similar Works

Action Title Year Authors
+ Multidimensional Characteristic Galerkin Schemes and Evolution Operators for Hyperbolic Problems 1995 S. Ostkamp
+ Hyperbolic problems : theory, numerics and applications : proceedings of the Twelfth International Conference on Hyperbolic Problems, June 9-13, 2008, Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park 2009 Eitan Tadmor
Jianguo Liu
Athanasios E. Tzavaras
+ Numerical Methods for Hyperbolic Equations. Theory and Applications. An International Conference to Honor Professor E. F. Toro. Santiago de Compostela, July, 4th-8th 2011. Book of Abstracts 2011 Alfredo Bermúdez
Luís Cea
María Elena Vázquez Cendón
+ Recent Advances in Numerical Methods for Hyperbolic PDE Systems 2021 Marı́a Luz Muñoz-Ruiz
Carlos Parés
Giovanni Russo
+ Finite Volume Evolution Galerkin Methods for Multidimensional Hyperbolic Systems 2001 Maria Lukáčová-Medviďová
K. W. Morton
Gerald Warnecke
+ Finite Difference Methods for Hyperbolic PDEs 2017 Zhilin Li
Zhonghua Qiao
Tao Tang
+ Fourier Analysis of Numerical Approximations of Hyperbolic Equations (R. Vichnevetsky and J. B. Bowles) 1984 Lloyd N. Trefethen
+ Modified nystroem methods for semi-discrete hyperbolic differential equations : (preprint) 1980 P.J. van der Houwen
van der
+ Modified nystroem methods for semi-discrete hyperbolic differential equations : (preprint) 1980 P.J. van deHouwen
+ Difference Methods for Hyperbolic Equations 1972 Tatsuo Nogi
+ Difference methods for hyperbolic equations 1972 達夫 野木
+ Difference Methods for PDEs 2019
+ PDF Chat Methods of the theory of hyperbolic differential equations 2022
+ PDF Chat Evolution Galerkin methods for hyperbolic systems in two space dimensions 2000 Maria Lukáčová-Medviďová
K. W. Morton
Gerald Warnecke
+ Runge–Kutta characteristic methods for first‐order linear hyperbolic equations 1997 Hong Wang
Mohamed Al–Lawatia
Aleksey S. Telyakovskiy
+ PDF Chat Spectral Methods for Hyperbolic Problems11This revised and updated chapter is based partly on work from the author's original article first published in the Journal of Computational and Applied Mathematics, Volume 128, Gottlieb and Hesthaven, Elsevier, 2001. 2016 Jan S. Hesthaven
+ Characteristic problems with normal derivatives for hyperbolic systems 2013 Елена Александровна Созонтова
+ EFFICIENT FINITE DIFFERENCE SCHEMES FOR MULTI-DIMENSIONAL NONLINEAR DIFFUSION EQUATIONS 1995 C.D. ANGELOPOULOS
V. Angelopoulos
+ 2D Continuous Galerkin Methods for Hyperbolic Equations 2020 Francis X. Giraldo
+ TOPICS IN SPECTRAL METHODS FOR HYPERBOLIC EQUATIONS 1987 Claudio Canuto

Works That Cite This (14)

Action Title Year Authors
+ PDF Chat A Mass Conservative Eulerian-Lagrangian Runge-Kutta Discontinuous Galerkin Method for Wave Equations with Large Time Stepping 2022 Xue Hong
Jing‐Mei Qiu
+ A Conservative Eulerian–Lagrangian Runge–Kutta Discontinuous Galerkin Method for Linear Hyperbolic System with Large Time Stepping 2024 Xue Hong
Jing‐Mei Qiu
+ PDF Chat On Evolution Galerkin Methods for the Maxwell and the Linearized Euler Equations 2004 Maria Lukáčová-Medviďová
Jitka Saibertová
Gerald Warnecke
Y. Zahaykah
+ PDF Chat Evolution Galerkin methods for hyperbolic systems in two space dimensions 2000 Maria Lukáčová-Medviďová
K. W. Morton
Gerald Warnecke
+ PDF Chat On the Stability of Evolution Galerkin Schemes Applied to a Two‐Dimensional Wave Equation System 2006 Maria Lukáčová-Medviďová
Gerald Warnecke
Y. Zahaykah
+ PDF Chat On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws 2004 Tim Kröger
Sebastian Noelle
Susanne Amy Zimmermann
+ Riemann-Solver Free Schemes 2005 Tim Kröger
Sebastian Noelle
+ The active flux scheme on Cartesian grids and its low Mach number limit 2018 Wasilij Barsukow
Jonathan Hohm
Christian Klingenberg
Philip L. Roe
+ The MoT-ICE: A New High-Resolution Wave-Propagation Algorithm for Multidimensional Systems of Conservation Laws Based on Fey's Method of Transport 2000 Sebastian Noelle
+ PDF Chat The Picard Integral Formulation of Weighted Essentially Nonoscillatory Schemes 2015 Andrew Christlieb
Yaman Güçlü
David C. Seal