A method of fractional steps for scalar conservation laws without the CFL condition

Type: Article

Publication Date: 1993-01-01

Citations: 42

DOI: https://doi.org/10.1090/s0025-5718-1993-1153165-5

Abstract

We present a numerical method for the <italic>n</italic>-dimensional initial value problem for the scalar conservation law <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline comma t right-parenthesis Subscript t Baseline plus sigma-summation Underscript i equals 1 Overscript n Endscripts f Subscript i Baseline left-parenthesis u right-parenthesis Subscript x 1 Baseline equals 0 comma u left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline comma 0 right-parenthesis equals u 0 left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo>+</mml:mo> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:munderover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u{({x_1}, \ldots ,{x_n},t)_t} + \sum _{i = 1}^n{f_i}{(u)_{{x_1}}} = 0, u({x_1}, \ldots ,{x_n},0) = {u_0}({x_1}, \ldots ,{x_n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our method is based on the use of dimensional splitting and Dafermos’s method to solve the one-dimensional equations. This method is unconditionally stable in the sense that the time step is not limited by the space discretization. Furthermore, we show that this method produces a subsequence which converges to the weak entropy solution as both the time and space discretization go to zero. Finally, two numerical examples are discussed.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ A FRACTIONAL STEPS METHOD FOR SCALAR CONSERVATION LAWS WITHOUT THE CFL CONDITION 1991 Helge Holden
Nils Henrik Risebro
+ PDF Chat Error bounds for Glimm difference approximations for scalar conservation laws 1985 David Hoff
Joel Smoller
+ PDF Chat A Method of Fractional Steps for Scalar Conservation Laws without the CFL Condition 1993 Helge Holden
Nils Henrik Risebro
+ PDF Chat Numerical approximation of a wave equation with unilateral constraints 1989 Michelle Schatzman
Michel Bercovier
+ PDF Chat A singular perturbation nonlinear boundary value problem and the 𝐸-condition for a scalar conservation law 1992 Jie Jiang
Xue Kong Wang
+ PDF Chat A note on numerical differentiation 1956 John W. Miles
+ PDF Chat Large-time behavior of solutions to a scalar conservation law in several space dimensions 1986 Patricia Bauman
Daniel Phillips
+ PDF Chat Numerical stability of the Halley-iteration for the solution of a system of nonlinear equations 1982 Annie Cuyt
+ PDF Chat A moving mesh numerical method for hyperbolic conservation laws 1986 Bradley J. Lucier
+ Finite-difference schemes for scalar conservation laws with source terms 1996 Achim Schroll
+ PDF Chat Numerical Methods for Conservation Laws. 1991 Chi‐Wang Shu
Randall J. LeVeque
+ PDF Chat Stabilization in a gradient system with a conservation law 1992 Robert L. Pego
+ PDF Chat Solving integral equations by 𝐿 and 𝐿⁻¹ operators 1971 Charles Fox
+ PDF Chat The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme 1984 Eitan Tadmor
+ Finite time blow-up for the inhomogeneous equation 𝑢_{𝑡}=Δ𝑢+𝑎(𝑥)𝑢^{𝑝}+𝜆𝜙 in 𝑅^{𝑑} 1999 Ross G. Pinsky
+ PDF Chat The partial differential equation 𝑢_{𝑡}+𝑓(𝑢)ₓ=-𝑐𝑢 1982 Harumi Hattori
+ Numerical solution of conservation laws 2005 H.- Kreiss
+ A numerical method based on quadrature rules for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1351" altimg="si3.svg"><mml:mi>ψ</mml:mi></mml:math>-fractional differential equations 2022 Aneela Sabir
Mujeeb ur Rehman
+ Numerical methods for conservation laws 1991 W.F.A.
+ Une méthode de décomposition de domaine pour la résolution numérique d’une équation non-linéaire 2020 Nahed Naceur