Type: Article
Publication Date: 1993-01-01
Citations: 42
DOI: https://doi.org/10.1090/s0025-5718-1993-1153165-5
We present a numerical method for the <italic>n</italic>-dimensional initial value problem for the scalar conservation law <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline comma t right-parenthesis Subscript t Baseline plus sigma-summation Underscript i equals 1 Overscript n Endscripts f Subscript i Baseline left-parenthesis u right-parenthesis Subscript x 1 Baseline equals 0 comma u left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline comma 0 right-parenthesis equals u 0 left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo>+</mml:mo> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:munderover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u{({x_1}, \ldots ,{x_n},t)_t} + \sum _{i = 1}^n{f_i}{(u)_{{x_1}}} = 0, u({x_1}, \ldots ,{x_n},0) = {u_0}({x_1}, \ldots ,{x_n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our method is based on the use of dimensional splitting and Dafermos’s method to solve the one-dimensional equations. This method is unconditionally stable in the sense that the time step is not limited by the space discretization. Furthermore, we show that this method produces a subsequence which converges to the weak entropy solution as both the time and space discretization go to zero. Finally, two numerical examples are discussed.